资源与生态学报 ›› 2021, Vol. 12 ›› Issue (1): 91-98.DOI: 10.5814/j.issn.1674-764x.2021.01.009
收稿日期:
2020-03-10
接受日期:
2020-06-30
出版日期:
2021-01-30
发布日期:
2021-03-30
通讯作者:
邓欧
LU Chunxia1,2(), DENG Ou3,*(
), LI Yiqiu3
Received:
2020-03-10
Accepted:
2020-06-30
Online:
2021-01-30
Published:
2021-03-30
Contact:
DENG Ou
About author:
LU Chunxia, E-mail: Supported by:
摘要:
张家口市地处生态脆弱的农牧交错地带,地表水资源匮乏,地下水超采严重,可利用的地表水资源有限。同时,张家口市又处于京津冀协同发展中的水源涵养区,其水资源安全对于整个京津冀至关重要。根据水资源安全风险大小进行水资源分区管理和决策工作意义重大。本文在遵循科学性、可比性、可操作性和数据可获取性原则指导下,构建水资源安全风险评价指标体系,利用层次分析法求取指标权重,采用数理统计和3S技术空间分析获取张家口市基于水资源分区的以县域为单位的多源数据,进行数据归一化处理和加权水资源安全风险评价,结果表明:张家口市水资源安全风险在地貌单元与县域行政尺度上和在流域尺度上分异明显。坝上高风险区面积较大,但高风险极端值在坝下市辖区;流域尺度上水资源安全高风险区分布在内陆河流域和永定河流域,所辖的滦河流域、潮白河流域、大青河流域水资源安全风险值呈现由北向南降低的趋势。坝上偏西偏北区域,“孕灾环境脆弱性”对水资源安全风险的贡献率最大,坝下农区农业用水虽然会挤占其它产业发展和生态用水空间,在水资源禀赋不足的条件下,市辖区城市人口的集聚和工业经济的发展造成的水资源数量短缺和水环境污染所引发的水资源安全风险更大。张家口市水资源安全风险的空间分异研究,可为农牧交错带水资源安全风险分区管理和决策工作提供重要科学参考。
鲁春霞, 邓欧, 李亦秋. 张家口市水资源安全风险空间分异研究[J]. 资源与生态学报, 2021, 12(1): 91-98.
LU Chunxia, DENG Ou, LI Yiqiu. A Study on Spatial Variation of Water Security Risks for the Zhangjiakou Region[J]. Journal of Resources and Ecology, 2021, 12(1): 91-98.
Water resource zoning | Administrative division | Area (km2) | Water resource zoning | Administrative division | Area (km2) |
---|---|---|---|---|---|
Luanhe mountainous area | Guyuan | 732.00 | Cetian Reservoir to Sanjiadian of Yongding River | Qiaodong | 34.40 |
Sub-total | 732.00 | Qiaoxi | 101.32 | ||
Beisanhe mountainous Area | Guyuan | 1083.00 | Xuanhua | 264.20 | |
Chicheng | 5287.00 | Xiahuayuan | 304.00 | ||
Sub-total | 6370.00 | Xuanhua | 2107.70 | ||
Daqinghe mountainous area | Zhuolu | 1019.64 | Shangyi | 1337.64 | |
Yuxian | 237.06 | Yuxian | 2982.40 | ||
Sub-total | 1256.70 | Yangyuan | 1839.00 | ||
Eastern Inner Mongolia Plateau (Inland river basins) | Zhangbei | 3872.70 | Huai’an | 1693.00 | |
Kangbao | 3364.80 | Wanquan | 1160.97 | ||
Shangyi | 1294.83 | Huailai | 1604.40 | ||
Guyuan | 1573.00 | Zhuolu | 1778.95 | ||
Saibei | 227.33 | Chongli | 2344.10 | ||
Chabei | 373.00 | Gaoxin | 169.10 | ||
Sub-total | 10705.66 | Sub-total | 17721.18 | ||
Total | 36785.54 |
Table 1 Watershed, water resources and administrative divisions in Zhangjiakou region
Water resource zoning | Administrative division | Area (km2) | Water resource zoning | Administrative division | Area (km2) |
---|---|---|---|---|---|
Luanhe mountainous area | Guyuan | 732.00 | Cetian Reservoir to Sanjiadian of Yongding River | Qiaodong | 34.40 |
Sub-total | 732.00 | Qiaoxi | 101.32 | ||
Beisanhe mountainous Area | Guyuan | 1083.00 | Xuanhua | 264.20 | |
Chicheng | 5287.00 | Xiahuayuan | 304.00 | ||
Sub-total | 6370.00 | Xuanhua | 2107.70 | ||
Daqinghe mountainous area | Zhuolu | 1019.64 | Shangyi | 1337.64 | |
Yuxian | 237.06 | Yuxian | 2982.40 | ||
Sub-total | 1256.70 | Yangyuan | 1839.00 | ||
Eastern Inner Mongolia Plateau (Inland river basins) | Zhangbei | 3872.70 | Huai’an | 1693.00 | |
Kangbao | 3364.80 | Wanquan | 1160.97 | ||
Shangyi | 1294.83 | Huailai | 1604.40 | ||
Guyuan | 1573.00 | Zhuolu | 1778.95 | ||
Saibei | 227.33 | Chongli | 2344.10 | ||
Chabei | 373.00 | Gaoxin | 169.10 | ||
Sub-total | 10705.66 | Sub-total | 17721.18 | ||
Total | 36785.54 |
Target layer (Z) | Attribute layer (A) | Indicator layer (B) | Description |
---|---|---|---|
Water security risks (WR) | Hazard (H) | Per capita available water resources (H1) | Calculate the amount of water resources based on precipitation and the water production coefficient, and calculate the ratio of water resources to total resident population (m3 person-1) |
Development and utilization rate of water resources (H2) | Percentage of regional water consumption to total available water resources (%) | ||
Percentage of groundwater supply (H3) | Percentage of groundwater sources in total water supply (%) | ||
Emission intensity per 10000 yuan of GDP (H4) | Ratio of wastewater discharge to GDP (m3 (104 yuan) -1) | ||
Drought index (H5) | Ratio of annual evaporation capacity to annual precipitation | ||
Variation coefficient of precipitation (H6) | Standard deviation divided by average precipitation | ||
Exposure (E) | Population density (E1) | Population per unit area (persons km-2) | |
Per capita GDP (E2) | Ratio of GDP to resident population (yuan person-1) | ||
Percentage of cultivated land (E3) | Percentage of cultivated land in total land area (%) | ||
Percentage of effective irrigated farmland (E4) | Percentage of effective irrigation in cultivated land area (%) | ||
Percentage of agricultural output value in GDP (E5) | Percentage of agricultural output value in GDP (%) | ||
Vulnerability (V) | Forest and grassland coverage (V1) | Percentage of forests and grassland in total land area (%) | |
Percentage of surface engineering water supply (V2) | Percentage of surface engineering in total water supply (%) | ||
Water consumption per 10000 yuan of industrial added value (V3) | Ratio of industrial water consumption to industrial added value (m3 (104 yuan) -1) | ||
Water consumption per unit of GDP (V4) | Ratio of water consumption to GDP (m3 (104 yuan) -1) | ||
Water consumption per mu of irrigated farmland (V5) | Ratio of irrigation water to actual irrigated farmland (m3 mu-1) | ||
Percentage of eco-environmental water replenishment (V6) | Percentage of eco-environmental water replenishment in total water supply (%) |
Table 2 Hierarchical model of water resource security risk evaluation and the meaning of its index
Target layer (Z) | Attribute layer (A) | Indicator layer (B) | Description |
---|---|---|---|
Water security risks (WR) | Hazard (H) | Per capita available water resources (H1) | Calculate the amount of water resources based on precipitation and the water production coefficient, and calculate the ratio of water resources to total resident population (m3 person-1) |
Development and utilization rate of water resources (H2) | Percentage of regional water consumption to total available water resources (%) | ||
Percentage of groundwater supply (H3) | Percentage of groundwater sources in total water supply (%) | ||
Emission intensity per 10000 yuan of GDP (H4) | Ratio of wastewater discharge to GDP (m3 (104 yuan) -1) | ||
Drought index (H5) | Ratio of annual evaporation capacity to annual precipitation | ||
Variation coefficient of precipitation (H6) | Standard deviation divided by average precipitation | ||
Exposure (E) | Population density (E1) | Population per unit area (persons km-2) | |
Per capita GDP (E2) | Ratio of GDP to resident population (yuan person-1) | ||
Percentage of cultivated land (E3) | Percentage of cultivated land in total land area (%) | ||
Percentage of effective irrigated farmland (E4) | Percentage of effective irrigation in cultivated land area (%) | ||
Percentage of agricultural output value in GDP (E5) | Percentage of agricultural output value in GDP (%) | ||
Vulnerability (V) | Forest and grassland coverage (V1) | Percentage of forests and grassland in total land area (%) | |
Percentage of surface engineering water supply (V2) | Percentage of surface engineering in total water supply (%) | ||
Water consumption per 10000 yuan of industrial added value (V3) | Ratio of industrial water consumption to industrial added value (m3 (104 yuan) -1) | ||
Water consumption per unit of GDP (V4) | Ratio of water consumption to GDP (m3 (104 yuan) -1) | ||
Water consumption per mu of irrigated farmland (V5) | Ratio of irrigation water to actual irrigated farmland (m3 mu-1) | ||
Percentage of eco-environmental water replenishment (V6) | Percentage of eco-environmental water replenishment in total water supply (%) |
Attributes | W | Factors | Wi | Consistency Ratio (CR) | |
---|---|---|---|---|---|
H | 0.4039 | H1 | 0.2288 | 0.0759 | |
H2 | 0.1887 | ||||
H3 | 0.131 | ||||
H4 | 0.2399 | ||||
H5 | 0.1353 | ||||
H6 | 0.0763 | ||||
E | 0.2806 | E1 | 0.3017 | 0.0131 | 0.0001 |
E2 | 0.1006 | ||||
E3 | 0.1778 | ||||
E4 | 0.3017 | ||||
E5 | 0.1182 | ||||
V | 0.3154 | V1 | 0.1964 | 0.0054 | |
V2 | 0.3114 | ||||
V3 | 0.2031 | ||||
V4 | 0.0926 | ||||
V5 | 0.0982 | ||||
V6 | 0.0982 |
Table 3 Hierarchical single sorting and its consistency test results
Attributes | W | Factors | Wi | Consistency Ratio (CR) | |
---|---|---|---|---|---|
H | 0.4039 | H1 | 0.2288 | 0.0759 | |
H2 | 0.1887 | ||||
H3 | 0.131 | ||||
H4 | 0.2399 | ||||
H5 | 0.1353 | ||||
H6 | 0.0763 | ||||
E | 0.2806 | E1 | 0.3017 | 0.0131 | 0.0001 |
E2 | 0.1006 | ||||
E3 | 0.1778 | ||||
E4 | 0.3017 | ||||
E5 | 0.1182 | ||||
V | 0.3154 | V1 | 0.1964 | 0.0054 | |
V2 | 0.3114 | ||||
V3 | 0.2031 | ||||
V4 | 0.0926 | ||||
V5 | 0.0982 | ||||
V6 | 0.0982 |
Target layer (Z) | Indicator layer (B) | WH | Indicator layer (B) | WE | Indicator layer (B) | WV |
---|---|---|---|---|---|---|
WR | H1 | 0.0924 | E1 | 0.0847 | V1 | 0.0620 |
H2 | 0.0762 | E2 | 0.0282 | V2 | 0.0982 | |
H3 | 0.0547 | E3 | 0.0499 | V3 | 0.0641 | |
H4 | 0.0308 | E4 | 0.0847 | V4 | 0.0310 | |
H5 | 0.0529 | E5 | 0.0332 | V5 | 0.0292 | |
H6 | 0.0969 | V6 | 0.0310 | |||
CR | CR=0.0375<0.1 |
Table 4 Hierarchical general sorting and its consistency test results
Target layer (Z) | Indicator layer (B) | WH | Indicator layer (B) | WE | Indicator layer (B) | WV |
---|---|---|---|---|---|---|
WR | H1 | 0.0924 | E1 | 0.0847 | V1 | 0.0620 |
H2 | 0.0762 | E2 | 0.0282 | V2 | 0.0982 | |
H3 | 0.0547 | E3 | 0.0499 | V3 | 0.0641 | |
H4 | 0.0308 | E4 | 0.0847 | V4 | 0.0310 | |
H5 | 0.0529 | E5 | 0.0332 | V5 | 0.0292 | |
H6 | 0.0969 | V6 | 0.0310 | |||
CR | CR=0.0375<0.1 |
Water resource zoning | Administrative division | Hazard | Exposure | Vulnerability | Water security risks | Security risk level |
---|---|---|---|---|---|---|
Luanhe mountainous area | Guyuan | 0.0460 | 0.0951 | 0.1460 | 0.2871 | L |
Beisanhe mountainous area | Guyuan | 0.0720 | 0.0662 | 0.1336 | 0.2718 | L |
Chicheng | 0.1001 | 0.0480 | 0.1099 | 0.2579 | L | |
Cetian Reservoir to Sanjiadian of Yongding River | Qiaodong | 0.2633 | 0.1782 | 0.1634 | 0.6049 | EH |
Qiaoxi | 0.2472 | 0.1077 | 0.1837 | 0.5387 | EH | |
Xuanhua | 0.2920 | 0.1122 | 0.2094 | 0.6136 | EH | |
Xiahuayuan | 0.1919 | 0.0495 | 0.1112 | 0.3526 | L | |
Xuanhua | 0.1486 | 0.1009 | 0.1570 | 0.4065 | H | |
Shangyi | 0.1360 | 0.0787 | 0.1764 | 0.3910 | H | |
Yuxian | 0.1694 | 0.0746 | 0.1162 | 0.3601 | M | |
Yangyuan | 0.1388 | 0.0874 | 0.1137 | 0.3400 | M | |
Huai'an | 0.1815 | 0.0794 | 0.1746 | 0.4355 | H | |
Wanquan | 0.1451 | 0.1071 | 0.0890 | 0.3412 | M | |
Huailai | 0.1459 | 0.1110 | 0.0846 | 0.3415 | M | |
Zhuolu | 0.1552 | 0.1181 | 0.1117 | 0.3850 | M | |
Chongli | 0.1449 | 0.0505 | 0.1168 | 0.3122 | L | |
Gaoxin | 0.2360 | 0.0928 | 0.1998 | 0.5286 | EH | |
Daqinghe mountainous area | Zhuolu | 0.1022 | 0.0570 | 0.0493 | 0.2086 | LR |
Eastern Inner Mongolia Plateau (Inland river basins) | Zhangbei | 0.1975 | 0.0712 | 0.1682 | 0.4369 | H |
Kangbao | 0.1323 | 0.0781 | 0.1680 | 0.3784 | M | |
Shangyi | 0.1131 | 0.0787 | 0.1764 | 0.3682 | M | |
Guyuan | 0.1746 | 0.0853 | 0.1801 | 0.4400 | EH | |
Saibei | 0.1749 | 0.1336 | 0.1742 | 0.4827 | EH | |
Chabei | 0.1630 | 0.0964 | 0.1508 | 0.4103 | H |
Table 5 Contributions of water security risk attributes and risk levels in Zhangjiakou region, 2017
Water resource zoning | Administrative division | Hazard | Exposure | Vulnerability | Water security risks | Security risk level |
---|---|---|---|---|---|---|
Luanhe mountainous area | Guyuan | 0.0460 | 0.0951 | 0.1460 | 0.2871 | L |
Beisanhe mountainous area | Guyuan | 0.0720 | 0.0662 | 0.1336 | 0.2718 | L |
Chicheng | 0.1001 | 0.0480 | 0.1099 | 0.2579 | L | |
Cetian Reservoir to Sanjiadian of Yongding River | Qiaodong | 0.2633 | 0.1782 | 0.1634 | 0.6049 | EH |
Qiaoxi | 0.2472 | 0.1077 | 0.1837 | 0.5387 | EH | |
Xuanhua | 0.2920 | 0.1122 | 0.2094 | 0.6136 | EH | |
Xiahuayuan | 0.1919 | 0.0495 | 0.1112 | 0.3526 | L | |
Xuanhua | 0.1486 | 0.1009 | 0.1570 | 0.4065 | H | |
Shangyi | 0.1360 | 0.0787 | 0.1764 | 0.3910 | H | |
Yuxian | 0.1694 | 0.0746 | 0.1162 | 0.3601 | M | |
Yangyuan | 0.1388 | 0.0874 | 0.1137 | 0.3400 | M | |
Huai'an | 0.1815 | 0.0794 | 0.1746 | 0.4355 | H | |
Wanquan | 0.1451 | 0.1071 | 0.0890 | 0.3412 | M | |
Huailai | 0.1459 | 0.1110 | 0.0846 | 0.3415 | M | |
Zhuolu | 0.1552 | 0.1181 | 0.1117 | 0.3850 | M | |
Chongli | 0.1449 | 0.0505 | 0.1168 | 0.3122 | L | |
Gaoxin | 0.2360 | 0.0928 | 0.1998 | 0.5286 | EH | |
Daqinghe mountainous area | Zhuolu | 0.1022 | 0.0570 | 0.0493 | 0.2086 | LR |
Eastern Inner Mongolia Plateau (Inland river basins) | Zhangbei | 0.1975 | 0.0712 | 0.1682 | 0.4369 | H |
Kangbao | 0.1323 | 0.0781 | 0.1680 | 0.3784 | M | |
Shangyi | 0.1131 | 0.0787 | 0.1764 | 0.3682 | M | |
Guyuan | 0.1746 | 0.0853 | 0.1801 | 0.4400 | EH | |
Saibei | 0.1749 | 0.1336 | 0.1742 | 0.4827 | EH | |
Chabei | 0.1630 | 0.0964 | 0.1508 | 0.4103 | H |
[1] | Dang L J, Xu Y. 2015. Review of research progress in carrying capacity of water resources. Research of Soil & Water Conservation, 22(3):341-348. (in Chinese) |
[2] | Department of Water Resources of Hebei Province (DWRHP),Hebei water resources bulletin compilation and development leading group. 2017. Hebei water resources bulletin 2017. (in Chinese) |
[3] | Du H M, Yan J P, Wang P T. 2015. The drought disaster and its response to the warming-drying climate in the farming-pastoral ecotones in northern China. Journal of Arid Land Resources and Environment, 29(1):124-128. (in Chinese) |
[4] | Fang Z Y, Xiao R C. 2003. General strategy for water conservancy development in China: Sustainable development of national economy of China based on sustainable utilization of water resources. Advances in Science & Technology of Water Resources, 23(1):1-4. (in Chinese) |
[5] | Feng Z M, Yang Y Z, You Z. 2014. Research on the water resources restriction on population distribution in China. Journal of Natural Resources, 29(10):1637-1648. (in Chinese) |
[6] | Fischhoff B. 1985. Managing risk perceptions. Issues in Science and Technology, 2(1):83-96. |
[7] | Huang M C, Xie J C, Ruan B Q, et al. 2007. Model for assessing water shortage risk based on support vector machine. Journal of Hydraulic Engineering, 38(3):255-259. (in Chinese) |
[8] | Li Z F. 2015. Climate change and water security in China’s surrounding regions. The Journal of International Studies, (4):38-55. (in Chinese) |
[9] |
Liang Y Y, Lv A F. 2019. Risk assessment of water resource security in China. Resources Science, 41(4):775-789. (in Chinese)
DOI URL |
[10] |
Liu J J, Dong S C, Li Z H. 2011. Comprehensive evaluation of China’s water resources carrying capacity. Journal of Natural Resources, 26(2):258-269. (in Chinese)
DOI URL |
[11] | Liu Y H, Li Y B, Liang X Y, et al. 2019. Study on water resource carrying capacity evaluation and change in China. Resources and Environment in the Yangtze Basin, 28(5):1080-1091. (in Chinese) |
[12] | Saaty T L. 1980. The analytic hierarchy process. New York, USA: McGraw-Hill Company. |
[13] | Shi P J. 2002. Theory on disaster science and disaster dynamics. Journal of Natural Disasters, 11(3):1-9. (in Chinese) |
[14] | Surak J G, Schmidt R H, Rodrick G E. 2003. International organization for standardization ISO 9000 and related standards. Hoboken, USA: John Wiley & Sons, Inc. |
[15] |
Xia J, Zuo Q T. 2013. China’s decade summary and prospect of water resources academic exchange. Journal of Natural Resources, 28(9):1488-1497. (in Chinese)
DOI URL |
[16] | Yao J H. 2013. On risk assessment of water resources security. Journal of Changsha University, 27(5):94-96. (in Chinese) |
[17] | Zhai X J. 2018. Study on the functional characteristics and evolution of the main ecosystems in the agro-pastoral ecotone. Diss., China Agricultural University. (in Chinese) |
[18] | Zhang L, Yuan B, Yuan L Y. 2009. Water resources situation and development and utilization suggestion of Zhangjiakou. Haihe Water Resources, (12):20-22. (in Chinese) |
[19] |
Zhang S F, Chen J X, Hua D, et al. 2010. Research on the assessment of water resource system risk—A case study of Beijing. Journal of Natural Resources, 25(11):1855-1863. (in Chinese)
DOI URL |
[20] |
Zhang X, Xu K, Zhang D. 2012. Risk assessment of water resources utilization in Songliao Basin of Northeast China. Environmental Earth Sciences, 67(5):1319-1329. (in Chinese)
DOI URL |
[21] | Zhangjiakou Municipal People’s Government (ZMPG). 2017. Zhangjiakou statistical yearbook in 2017. Peking, China: Kyushu press. (in Chinese) |
[1] | 董顺舟, 赵宇鸾, 李秀彬. 森林转型的空间分异特征及其影响因素分析——以贵州遵义市为例[J]. 资源与生态学报, 2018, 9(4): 341-351. |
[2] | 王新歌, 席建超, 杨东阳, 陈田. 基于地理探测器的乡村旅游化空间分异及其影响因素研究:以野三坡旅游区为例[J]. 资源与生态学报, 2016, 7(6): 464-471. |
[3] | 孙才志, 陈相涛, 陈雪姣. 下辽河平原浅层地下水污染风险评价及空间热点识别[J]. 资源与生态学报, 2016, 7(1): 51-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||