资源与生态学报 ›› 2019, Vol. 10 ›› Issue (3): 307-314.DOI: 10.5814/j.issn.1674-764X.2019.03.009
李海防1,2(), 刘庆华1(
), 李士美1, 李伟1, 杨金明1
收稿日期:
2018-02-04
接受日期:
2018-07-30
出版日期:
2019-05-30
发布日期:
2019-05-30
LI Haifang1,2(), LIU Qinghua1,*(
), LI Shimei1, LI Wei1, YANG Jinming1
Received:
2018-02-04
Accepted:
2018-07-30
Online:
2019-05-30
Published:
2019-05-30
Contact:
LIU Qinghua
About author:
First author: LI Haifang, E-mail:
Supported by:
摘要:
不同森林植被改变了林下穿透雨、树干径流、蒸发散和地表入渗,进而对林下不同层次土壤湿度产生重要影响。以华南地区漓江上游3种典型森林,包括毛竹林(Phyllostachys pubescens)、荷木林(Schima superba)和杉木林(Cunninghamia lanceolata)为研究对象,比较其不同层次土壤湿度及其影响因素。结果表明:(1) 毛竹林、荷木林和杉木林3种典型植被林下凋落物层和土壤层存在明显差异,荷木林林下土壤入渗强于毛竹林和杉木林;(2) 由于森林植被垂直结构差异,从0-20 cm表层土壤到50-80 cm深层土壤,3种典型植被不同层次土壤湿度存在较大的时空差异;(3) 荷木林各层次土壤湿度都明显高于毛竹林和杉木林;(4) 各层次土壤含水量与年降雨关系密切,随雨旱两季变化,毛竹林、荷木林和杉木林不同层次土壤湿度随降雨变化趋势基本一致; (5) 在0-20 cm表层土壤,土壤湿度主要受地表凋落物性质的影响,而在深层土壤,土壤湿度主要受植物根系分布和土壤物理性质的影响。本研究为深入了解漓江上游森林植被对降水产流的调节作用,客观评估漓江上游水资源和科学管理水源涵养林提供理论依据。
李海防, 刘庆华, 李士美, 李伟, 杨金明. 华南地区漓江上游3种典型森林不同层次土壤湿度比较研究[J]. 资源与生态学报, 2019, 10(3): 307-314.
LI Haifang,LIU Qinghua,LI Shimei,LI Wei,YANG Jinming. Comparison of Soil Moisture in Different Soil Layers between Three Typical Forests in the Upper Reaches of Lijiang River Basin, Southern China[J]. Journal of Resources and Ecology, 2019, 10(3): 307-314.
Forest type | PPF | SSF | CLF |
---|---|---|---|
Elevation (m) | 680 | 700 | 710 |
Slope aspect | SW | SW | W |
Slope (°) | 35 | 32 | 37 |
Canopy density (%) | 90 | 85 | 95 |
Density (trees ha-1) | 2250 | 1200 | 320 |
DBH (cm) | 8.3 | 18.4 | 19.3 |
Average height (m) | 10 | 7.5 | 15 |
Soil types | Mountain yellow earths |
Table 1 Forest characteristics for soil moisture in three typical forests
Forest type | PPF | SSF | CLF |
---|---|---|---|
Elevation (m) | 680 | 700 | 710 |
Slope aspect | SW | SW | W |
Slope (°) | 35 | 32 | 37 |
Canopy density (%) | 90 | 85 | 95 |
Density (trees ha-1) | 2250 | 1200 | 320 |
DBH (cm) | 8.3 | 18.4 | 19.3 |
Average height (m) | 10 | 7.5 | 15 |
Soil types | Mountain yellow earths |
Forest type | PPF | SSF | CLF | |
---|---|---|---|---|
Litter layer | Litterfall (t ha-1) | 11.21 | 14.73 | 13.49 |
Maximum water holding capacity (t ha-1) | 13.8 | 32.8 | 25.7 | |
0-20 cm soil layer | Soil bulk density (g cm-3) | 0.85 | 0.74 | 0.79 |
Capillary porosity (%) | 12.74 | 16.92 | 10.48 | |
Noncapillary porosity (%) | 44.96 | 45.48 | 39.73 | |
Total porosity (%) | 57.70 | 62.40 | 50.21 | |
Initial infiltration rate (mm/min) | 6.20 | 5.85 | 6.41 | |
Steady infiltration rate (mm/min) | 0.70 | 0.23 | 0.54 | |
20-50 cm soil layer | Soil bulk density (g cm-3) | 1.02 | 0.93 | 0.78 |
Capillary porosity (%) | 9.14 | 12.78 | 5.84 | |
Non-capillary porosity (%) | 43.54 | 44.75 | 50.88 | |
Total porosity (%) | 52.68 | 57.53 | 56.71 | |
Initial infiltration rate (mm/min) | 5.42 | 5.48 | 6.38 | |
Steady infiltration rate (mm/min) | 0.16 | 0.18 | 0.48 | |
50-80 cm soil layer | Soil bulk density (g cm-3) | 1.09 | 0.88 | 0.92 |
Capillary porosity (%) | 3.38 | 17.79 | 11.22 | |
Noncapillary porosity (%) | 49.78 | 39.89 | 44.93 | |
Total porosity (%) | 53.16 | 57.68 | 56.15 | |
Initial infiltration rate (mm/min) | 5.48 | 5.42 | 5.99 | |
Steady infiltration rate (mm/min) | 0.27 | 0.15 | 0.55 |
Table 2 Litterfall and soil physical properties of different layers in three typical forests
Forest type | PPF | SSF | CLF | |
---|---|---|---|---|
Litter layer | Litterfall (t ha-1) | 11.21 | 14.73 | 13.49 |
Maximum water holding capacity (t ha-1) | 13.8 | 32.8 | 25.7 | |
0-20 cm soil layer | Soil bulk density (g cm-3) | 0.85 | 0.74 | 0.79 |
Capillary porosity (%) | 12.74 | 16.92 | 10.48 | |
Noncapillary porosity (%) | 44.96 | 45.48 | 39.73 | |
Total porosity (%) | 57.70 | 62.40 | 50.21 | |
Initial infiltration rate (mm/min) | 6.20 | 5.85 | 6.41 | |
Steady infiltration rate (mm/min) | 0.70 | 0.23 | 0.54 | |
20-50 cm soil layer | Soil bulk density (g cm-3) | 1.02 | 0.93 | 0.78 |
Capillary porosity (%) | 9.14 | 12.78 | 5.84 | |
Non-capillary porosity (%) | 43.54 | 44.75 | 50.88 | |
Total porosity (%) | 52.68 | 57.53 | 56.71 | |
Initial infiltration rate (mm/min) | 5.42 | 5.48 | 6.38 | |
Steady infiltration rate (mm/min) | 0.16 | 0.18 | 0.48 | |
50-80 cm soil layer | Soil bulk density (g cm-3) | 1.09 | 0.88 | 0.92 |
Capillary porosity (%) | 3.38 | 17.79 | 11.22 | |
Noncapillary porosity (%) | 49.78 | 39.89 | 44.93 | |
Total porosity (%) | 53.16 | 57.68 | 56.15 | |
Initial infiltration rate (mm/min) | 5.48 | 5.42 | 5.99 | |
Steady infiltration rate (mm/min) | 0.27 | 0.15 | 0.55 |
Soil depth (cm) | PPF | SSF | CLF | Sig. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MEAN±SE | max | min | MEAN±SE | max | min | MEAN±SE | max | min | ||
0-20 | 39.71(0.28) | 41.19 | 38.01 | 50.53(0.58) | 53.84 | 47.55 | 36.75(0.33) | 38.61 | 35.01 | P<0.01 |
20-50 | 41.06(0.34) | 42.78 | 39.04 | 43.70(0.79) | 49.37 | 41.08 | 32.04(0.23) | 33.97 | 30.61 | P<0.01 |
50-80 | 42.97(1.05) | 50.07 | 38.26 | 46.27(0.57) | 48.39 | 42.42 | 31.47(0.65) | 34.51 | 27.60 | P<0.01 |
Table 3 Vertical variations of soil moisture at different depths in three forests
Soil depth (cm) | PPF | SSF | CLF | Sig. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MEAN±SE | max | min | MEAN±SE | max | min | MEAN±SE | max | min | ||
0-20 | 39.71(0.28) | 41.19 | 38.01 | 50.53(0.58) | 53.84 | 47.55 | 36.75(0.33) | 38.61 | 35.01 | P<0.01 |
20-50 | 41.06(0.34) | 42.78 | 39.04 | 43.70(0.79) | 49.37 | 41.08 | 32.04(0.23) | 33.97 | 30.61 | P<0.01 |
50-80 | 42.97(1.05) | 50.07 | 38.26 | 46.27(0.57) | 48.39 | 42.42 | 31.47(0.65) | 34.51 | 27.60 | P<0.01 |
Forest type | Soil layer (cm) | Correlation of soil moisture and monthly precipitation(R value) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | ||
PPF | 0-20 | 0.152** | 0.172** | 0.184** | 0.081** | 0.131** | 0.213** | 0.093** | 0.115** | 0.381** | 0.185** | 0.07** | 0.133** |
20-50 | 0.028 | 0.312** | 0.022 | 0.025* | 0.296** | 0.068** | 0.201** | 0.091** | 0.178** | 0.205** | 0.083** | 0.224** | |
50-80 | 0.106** | 0.305** | 0.120** | 0.247** | 0.193** | 0.052** | 0.280** | 0.059** | 0.012 | 0.063** | 0.011 | 0.012 | |
SSF | 0-20 | 0.16** | 0.341** | 0.078** | 0.042** | 0.196** | 0.120** | 0.304** | 0.139** | 0.255** | 0.076** | 0.101** | 0.117** |
20-50 | 0.118** | 0.240** | 0.011 | 0.044** | 0.130** | 0.004 | 0.127** | 0.01 | 0.319** | 0.055** | 0.043** | 0.154** | |
50-80 | 0.061** | 0.228** | 0.044** | 0.083** | 0.071** | 0.065** | 0.248** | 0.041** | 0.048** | 0.001 | 0.015 | 0.098** | |
CLF | 0-20 | 0.083** | 0.251** | 0.095** | 0.039** | 0.130** | 0. 19** | 0.333** | 0.499** | 0.553** | 0.257** | 0. 05** | 0.03** |
20-50 | 0.218** | 0.263** | 0.038** | 0.024** | 0.003 | 0.03** | 0.632** | 0.125** | 0.316** | 0.097** | 0.100** | 0.06** | |
50-80 | 0.296** | 0.198** | 0.022 | 0.099** | 0.245** | 0.07** | 0.250** | 0.064** | 0.042** | 0.045** | 0.100** | 0.082** |
Table 4 Correlation of soil moisture and monthly precipitation in three typical forests
Forest type | Soil layer (cm) | Correlation of soil moisture and monthly precipitation(R value) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | ||
PPF | 0-20 | 0.152** | 0.172** | 0.184** | 0.081** | 0.131** | 0.213** | 0.093** | 0.115** | 0.381** | 0.185** | 0.07** | 0.133** |
20-50 | 0.028 | 0.312** | 0.022 | 0.025* | 0.296** | 0.068** | 0.201** | 0.091** | 0.178** | 0.205** | 0.083** | 0.224** | |
50-80 | 0.106** | 0.305** | 0.120** | 0.247** | 0.193** | 0.052** | 0.280** | 0.059** | 0.012 | 0.063** | 0.011 | 0.012 | |
SSF | 0-20 | 0.16** | 0.341** | 0.078** | 0.042** | 0.196** | 0.120** | 0.304** | 0.139** | 0.255** | 0.076** | 0.101** | 0.117** |
20-50 | 0.118** | 0.240** | 0.011 | 0.044** | 0.130** | 0.004 | 0.127** | 0.01 | 0.319** | 0.055** | 0.043** | 0.154** | |
50-80 | 0.061** | 0.228** | 0.044** | 0.083** | 0.071** | 0.065** | 0.248** | 0.041** | 0.048** | 0.001 | 0.015 | 0.098** | |
CLF | 0-20 | 0.083** | 0.251** | 0.095** | 0.039** | 0.130** | 0. 19** | 0.333** | 0.499** | 0.553** | 0.257** | 0. 05** | 0.03** |
20-50 | 0.218** | 0.263** | 0.038** | 0.024** | 0.003 | 0.03** | 0.632** | 0.125** | 0.316** | 0.097** | 0.100** | 0.06** | |
50-80 | 0.296** | 0.198** | 0.022 | 0.099** | 0.245** | 0.07** | 0.250** | 0.064** | 0.042** | 0.045** | 0.100** | 0.082** |
` | Litterfall | Maximum water holding capacity | Soil bulk density | Capillary porosity | Non-capillary porosity | Total porosity | Initial infiltration rate | Steady infiltration rate | Soil moisture |
---|---|---|---|---|---|---|---|---|---|
Litterfall | 1.000 | ||||||||
Maximum water holding capacity | 0.998* | 1.000 | |||||||
Soil bulk density | -0.983* | -0.978* | 1.000 | ||||||
Capillary porosity | 0.862 | 0.874 | -0.754 | 1.000 | |||||
Non-capillary porosity | 0.168 | 0.192 | 0.017 | 0.644 | 1.000 | ||||
Total porosity | 0.633 | 0.651 | -0.479 | 0.938* | 0.870 | 1.000 | |||
Initial infiltration rate | -0.478 | -0.499 | 0.307 | -0.857 | -0.946* | -0.982* | 1.000 | ||
Steady infiltration rate | -0.939* | -0.947* | 0.859 | -0.984* | -0.497 | -0.861 | 0.751 | 1.000 | |
Soil moisture | 0.623 | 0.642 | -0.467 | 0.983* | 0.976* | 0.998* | -0.985* | -0.854 | 1.000 |
Table 5 The partial correlation matrix between soil moisture (%), litter stock (t ha-1), maximum water holding capacity of litter layer (t ha-1), soil bulk density (%), capillary porosity (%), non-capillary porosity (%), total porosity (%), initial infiltration rate (mm/min) and steady infiltration rate (mm/min).
` | Litterfall | Maximum water holding capacity | Soil bulk density | Capillary porosity | Non-capillary porosity | Total porosity | Initial infiltration rate | Steady infiltration rate | Soil moisture |
---|---|---|---|---|---|---|---|---|---|
Litterfall | 1.000 | ||||||||
Maximum water holding capacity | 0.998* | 1.000 | |||||||
Soil bulk density | -0.983* | -0.978* | 1.000 | ||||||
Capillary porosity | 0.862 | 0.874 | -0.754 | 1.000 | |||||
Non-capillary porosity | 0.168 | 0.192 | 0.017 | 0.644 | 1.000 | ||||
Total porosity | 0.633 | 0.651 | -0.479 | 0.938* | 0.870 | 1.000 | |||
Initial infiltration rate | -0.478 | -0.499 | 0.307 | -0.857 | -0.946* | -0.982* | 1.000 | ||
Steady infiltration rate | -0.939* | -0.947* | 0.859 | -0.984* | -0.497 | -0.861 | 0.751 | 1.000 | |
Soil moisture | 0.623 | 0.642 | -0.467 | 0.983* | 0.976* | 0.998* | -0.985* | -0.854 | 1.000 |
[1] | Aubert D, Loumagne C, Oudin L.2003. Sequential assimilation of soil moisture and stream flow data in a conceptual rainfall-runoff model.Journal of Hydrology, 280(1-4): 145-161. |
[2] | Bell K R, Blanchard B J, Schmugge T J, et al.1980. Analysis of surface moisture variations within large field sites.Water Resources Research, 16(4): 796-810. |
[3] | Benegas L, Ilstedt U, Roupsard O, et al.2014. Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in Central America.Agriculture, Ecosystems & Environment, 183: 185-196. |
[4] | Blake G R, Hartge K N.1986. Bulk density.In: Klute B (ed). Methods of soil analysis. ASA & SSSA, Madison, 363-375. |
[5] | Brocca L, Melone F, Moramarco T, et al.2009. Soil moisture temporal stability over experimental areas in Central Italy.Geoderma, 148(3-4): 364-374. |
[6] | Castillo V M, Gómez-Plaza A, Martínez-Mena M.2003. The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach.Journal of Hydrology, 284(1-4): 114-130. |
[7] | Dalsgaard L.2007. Above and below ground gaps-the effects of a small canopy opening on throughfall, soil moisture and tree transpiration in Suserup Skov, Denmark.Ecological Bulletins, 52: 81-102. |
[8] | Famiglietti J S, Rudnicki J W, Rodell M.1998. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas.Journal of Hydrology, 210(1-4): 259-281. |
[9] | Fu B, Chen L.2000. Agricultural landscape spatial pattern analysis in the semi-arid hill area of the Loess Plateau, China.Journal of Arid Environments, 44(3): 291-303. |
[10] | Gwak Y S, Kim S H.2016. Factors affecting soil moisture spatial variability for a humid forest hillslope.Hydrological Processes, 31(2): 431-445. |
[11] | He Z B, Zhao W Z, Liu H, et al.2012. The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: a case study in northwestern China’s Qilian Mountains.Journal of Hydrology, 420: 183-190. |
[12] | Hu Z Y, Wang J X, Peng P H, et al.2003. Studies on soil amelioratin of the protection forests in the hilly areas of central Sichuan.Journal of Sichuan Forestry Science and Technology, 24(3): 17-24. (in Chinese) |
[13] | Hudson B D.1994. Soil organic matter and available water capacity.Journal of Soil and Water Conservation, 49(2): 189-194. |
[14] | ISSCAS(Institute of Soil Sciences, Chinese Academy of Sciences). 1978. Physical and chemical analysis methods of soils. Shanghai:.Shanghai Science Technology Press. (in Chinese) |
[15] | Li X Y, Contreras S, Solé-Benet A, et al.2011. Controls of infiltration- runoff processes in Mediterranean karst rangelands in SE Spain.Catena, 86(2): 98-109. |
[16] | Liu H Y, Huang J G.2005. Dynamics of soil properties under secondary succession forest communities in Mt. Jinyu.Chinese Journal Applied Ecology, 16(11): 2041-2046. (in Chinese) |
[17] | Liu J, Ma D, Shi J.1999. A View of Harnessing Flood Disasters and Water Deficiency in Dry Seasons Along Li River.Carsologica Sinica, 18(2): 159-169. (in Chinese) |
[18] | Liu X, Zhang G C, Heathman G C, et al.2009. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China.Geoderma, 154(1-2): 123-130. |
[19] | Ma Z L, Gong Y B, Hu T X.2006. Characteristic of soil hydro-physical properties and water dynamics under different vegetation restoration types.Wuhan University Journal of Natural Sciences, 11(4): 1009-1014. |
[20] | Mahmood R, Hubbard K G.2007. Relationship between soil moisture of near surface and multiple depths of the root zone under heterogeneous land uses and varying hydro climatic condition.Hydrological Processes, 21(25): 3449-3462. |
[21] | Neris J, Jiménez C, Fuentes J, et al.2012. Vegetation and land-use effects on soil properties and water infiltration of Andisols inTenerife (Canary Islands, Spain).Catena, 98: 55-62. |
[22] | Neumann R B, Cardon Z G.2012. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies.New Phytologist, 194: 337-352. |
[23] | Penna D, Borga M, Norbiato D, et al.2009. Hillslope scale soil moisture variability in a steep alpine terrain.Journal of Hydrology, 364(3-4): 311-327. |
[24] | Seeger M, Errea M P, Beguería S, et al.2004. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees.Journal of Hydrology, 288(3-4): 299-311. |
[25] | Sharda V N, Ojaswi P R.2006. Hydrological evaluation of forest tree covers in different agro-ecological regions of India. In: Proc. Int. Workshop on Impacts of Reforestation of Degraded Lands on Landscape hydrology in the Asian Region, Roorkee, India. 6-10 March: 1-18. |
[26] | Staelens J A, De Schrijver A, Verheyen K, et al.2006. Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. Journal of Hydrology, 330(3-4): 651-662. |
[27] | Sun F X, Lu Y H, Wang J L, et al.2015. Soil moisture dynamics of typical ecosystems in response to precipitation: a monitoring-based analysis of hydrological service in the Qilian Mountains.Catena, 129: 63-75. |
[28] | Vereecken H, Huisman J A, Pachepsky Y, et al.2014. On the spatio-temporal dynamics of soil moisture at the field scale.Journal of Hydrology, 516: 76-96. |
[29] | Venkatesh B, Lakshman N, Purandra B K, et al.2010. Analysis of observed soil moisture patterns under different land covers in Western Ghats, India.Journal of hydrology, 397(3-4): 281-294. |
[30] | Venkatesh B, Nandagiri N, Purandara BK, et al.2011. Modelling soil moisture under different land covers in a sub-humid environment of Western Ghats, India.Journal of Earth System Science, 120(3): 387-398. |
[31] | Wang G X, Li Y S, Hu H C, et al.2008. Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet.Hydrological Processes, 22(17): 3310-3320. |
[32] | Wang G X, Liu G S, Li C J.2012. Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed. Journal of Hydrology, 444-445: 22-33. |
[33] | Wilson D J, Western A W, Grayson R B.2005. A terrain and data based method for generating the spatial distribution of soil moisture.Advances in Water Resources, 28(1): 43-54. |
[34] | Wohlfahrt G, Bianchi K, Cernusca A.2006. Leaf and stem maximum water storage capacity of herbaceous plants in a mountain meadow.Journal of Hydrology, 319(1-4): 383-390. |
[35] | Wu Q X, Han B, Li Y Y.2004. Characteristics of soil infiltration in watersheds in Loess Hilly Region.Science of Soil &Water Conservation, 2(2): 1-5. (in Chinese) |
[36] | Zhang C S, Xie G D, Fan S H, et al.2010. Variation in vegetation structure and soil properties, and the relation between understory plants and environmental variables under different phyllostachys pubescens forests in southeastern China.Environmental Management, 45(4): 779-792. |
[37] | Zhang W G, An S Q, Xu Z, et al.2011. The impact of vegetation and soil on runoff regulation in headwater streams on the east Qinghai-Tibet Plateau, China.Catena, 87(2): 182-189. |
[38] | Zhao H L, Yi X Y, Zhou R L, et al.2006. Wind erosion and sand accumulation effects on soil properties in Horqin Sandy Farmland, Inner Mongolia.Catena, 65(1): 71-79. |
[39] | Zhao X N, Wu P T, Gao X D, et al.2014. Changes of soil hydraulic properties under early-stage natural vegetation recovering on the Loess Plateau of China.Catena, 113: 386-391. |
[40] | Zheng Y S, Chen LG, Hong W.1998. Study on productivity and soil properties of mixed forests of Chinese fir and phyllostachys heterocycla cv. pubescens. Scientia Silvae Sinicae, 34(1): 16-25. (in Chinese) |
[41] | Zheng H, Chen F L, Ouyang Z Y, et al.2008. Impacts of reforestation approaches on runoff control in the hilly red soil region of southern China.Journal of Hydrology, 356(1-2): 174-184. |
[42] | Zimmermann B, Elsenbeer H.2008. Spatial and temporal variability of soil saturated hydraulic conductivity in gradients of disturbance.Journal of Hydrology, 361(1-2): 78-95. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||