Journal of Resources and Ecology >
Green Water Resource Utilization Efficiency in Urban Agglomerations: Measurement, Spatiotemporal Variations and Influencing Factors
Received date: 2022-09-06
Accepted date: 2023-01-30
Online published: 2023-10-23
Supported by
The Science and Technology Projects of Jiangxi Provincial Education Department(GJJ2200518)
The Ministry of Education in China of Humanities and Social Sciences(20YJAZH037)
Green development is the coordinated development of the economy, society and environment and has become a mainstream development model. This paper evaluates the green water resource utilization efficiency (GWRUE) of 38 regions in the four-city area in central China during 2010-2019 using a super-slacks-based measure (super-SBM) DEA model considering unexpected output. Then, the spatiotemporal variations in GWRUE are analyzed by the standard deviational ellipse method, and the geographical detector method is employed to reveal the dominant impacts and interaction impacts on GWRUE spatiotemporal variations. The results show that: (1) From 2010 to 2019, the GWRUE in the four-city area in central China was low, and the difference among regions was obvious, showing a downward trend. (2) From 2010 to 2019, the spatial gravity center of GWRUE experienced a change process from northeast to southwest, and its moving speed showed a “waveform” rising trend. Moreover, the standard deviational ellipse (SDE) range of each characteristic time point showed a decreasing trend, indicating that the spatial variations in GWRUE tended to be agglomerated. (3) From 2010 to 2019, the influence of each factor on the spatial variations in GWRUE was different each year. In addition, the two-way interactions between different influencing factors were mainly manifested as bivariate enhancement relationships and nonlinear enhancement relationships and were especially affected by multiple factors that produce a nonlinear enhancement interaction. This study can provide a practical basis for realizing water ecological civilization construction and high-quality development in the four-city area in central China.
HU Mianhao , CHEN La , YUAN Juhong . Green Water Resource Utilization Efficiency in Urban Agglomerations: Measurement, Spatiotemporal Variations and Influencing Factors[J]. Journal of Resources and Ecology, 2023 , 14(6) : 1176 -1191 . DOI: 10.5814/j.issn.1674-764x.2023.06.007
Fig. 1 Location and spatial organization of the four-city area in central China |
Table 1 Explanations of influencing factors of the GWRUE in the four-city area in central China |
Influencing factors | Implication | Abbreviation | Unit |
---|---|---|---|
Water resource abundance (X1) | Per capita water supply | WRA | m3 person-1 |
Population density (X2) | The resident population per square kilometer | PD | person km-2 |
Economic development level (X3) | The proportion of the GDP to the local population | EDL | yuan person-1 |
Medical resource possession (X4) | The number of practicing (or assistant) physicians | MRP | person |
Proportion of agriculture water use (X5) | The proportion of agricultural water consumption to regional total water consumption | PAWU | % |
Proportion of industrial water use (X6) | The proportion of industrial water consumption to regional total water consumption | PIWU | % |
Proportion of domestic water use (X7) | The proportion of domestic water consumption to regional total water consumption | PDWU | % |
Foreign trade dependence (X8) | The proportion of import and export trade value to GDP | FTD | % |
Industrial transformation degree (X9) | The proportion of tertiary industry value added to GDP | ITD | % |
Science and education level (X10) | The proportion of science and education expenditure to local financial expenditure | SEL | % |
Dependence degree of foreign actual investment (X11) | The proportion of foreign direct investment to GDP | DDFAI | % |
Urban dependence on real estate (X12) | The proportion of total investment in real estate development to GDP | UDRE | % |
Table 2 GWRUE in the four-city area in central China during 2010-2019 |
Region | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
Wuhan | 1.101 | 1.044 | 1.057 | 1.069 | 1.082 | 1.068 | 1.089 | 1.084 | 1.047 | 0.219 | 0.986 |
Huangshi | 0.663 | 0.697 | 0.694 | 0.646 | 0.625 | 0.568 | 0.564 | 0.588 | 0.572 | 2.404 | 0.802 |
Ezhou | 0.792 | 0.841 | 0.832 | 1.032 | 1.036 | 1.025 | 0.791 | 1.186 | 0.782 | 1.001 | 0.932 |
Xiaogan | 0.442 | 0.398 | 0.391 | 0.371 | 0.392 | 0.395 | 0.393 | 0.380 | 0.377 | 0.188 | 0.373 |
Huanggang | 0.340 | 0.326 | 0.325 | 0.308 | 0.322 | 0.341 | 0.354 | 0.346 | 0.333 | 0.154 | 0.315 |
Xianning | 0.488 | 0.475 | 0.475 | 0.484 | 0.497 | 0.489 | 0.523 | 0.455 | 0.500 | 0.297 | 0.468 |
Xiantao | 1.015 | 1.000 | 1.002 | 1.004 | 1.003 | 1.012 | 1.002 | 0.763 | 0.744 | 0.508 | 0.905 |
Qianjiang | 1.095 | 1.187 | 1.153 | 1.147 | 1.145 | 1.093 | 1.111 | 1.169 | 1.136 | 1.056 | 1.129 |
Tianmen | 1.035 | 1.034 | 1.032 | 1.039 | 1.039 | 1.040 | 1.031 | 0.732 | 1.029 | 1.055 | 1.007 |
Changsha | 1.002 | 1.031 | 1.025 | 1.034 | 1.027 | 1.017 | 1.001 | 1.006 | 1.032 | 0.215 | 0.939 |
Zhuzhou | 0.594 | 0.573 | 0.583 | 0.488 | 0.514 | 0.593 | 0.551 | 0.544 | 0.536 | 1.397 | 0.637 |
Xiangtan | 0.581 | 0.575 | 0.566 | 0.521 | 0.551 | 0.574 | 0.547 | 0.552 | 0.566 | 0.249 | 0.528 |
Hengyang | 0.709 | 0.432 | 1.013 | 0.337 | 0.361 | 0.405 | 0.388 | 0.372 | 0.347 | 0.181 | 0.454 |
Changde | 1.074 | 1.068 | 1.042 | 1.035 | 1.037 | 1.054 | 1.009 | 0.547 | 0.555 | 0.221 | 0.864 |
Yueyang | 0.704 | 0.503 | 1.012 | 0.607 | 0.615 | 0.558 | 0.478 | 0.379 | 0.380 | 0.195 | 0.543 |
Yiyang | 0.557 | 0.449 | 0.464 | 0.428 | 0.453 | 0.477 | 0.446 | 0.436 | 0.447 | 0.206 | 0.436 |
Loudi | 0.740 | 0.528 | 0.530 | 0.489 | 0.510 | 0.541 | 0.512 | 0.502 | 0.500 | 0.235 | 0.509 |
Nanchang | 1.025 | 0.514 | 0.527 | 0.510 | 0.517 | 0.517 | 0.498 | 0.614 | 0.610 | 0.209 | 0.554 |
Jingdezhen | 0.773 | 0.737 | 0.780 | 0.729 | 0.751 | 0.788 | 0.804 | 0.719 | 0.653 | 0.512 | 0.724 |
Pingxiang | 0.701 | 0.712 | 1.000 | 0.650 | 0.695 | 1.024 | 1.023 | 1.020 | 1.010 | 0.574 | 0.841 |
Jiujiang | 0.454 | 0.367 | 0.394 | 0.381 | 0.405 | 0.442 | 0.422 | 0.444 | 0.470 | 0.223 | 0.400 |
Xinyu | 1.128 | 1.032 | 1.060 | 1.055 | 1.048 | 1.088 | 1.144 | 1.059 | 1.142 | 1.014 | 1.077 |
Yingtan | 1.070 | 0.838 | 1.022 | 0.850 | 0.881 | 0.916 | 1.064 | 1.054 | 1.044 | 1.045 | 0.978 |
Ji’an | 0.338 | 0.312 | 0.323 | 0.328 | 0.346 | 0.371 | 0.349 | 0.340 | 0.346 | 0.170 | 0.322 |
Yichun | 0.388 | 0.313 | 0.368 | 0.308 | 0.321 | 0.341 | 0.344 | 0.371 | 0.354 | 0.179 | 0.329 |
Fuzhou | 0.406 | 0.382 | 0.407 | 0.397 | 0.417 | 0.430 | 0.429 | 0.429 | 0.415 | 0.197 | 0.391 |
Shangrao | 0.331 | 0.302 | 0.330 | 0.301 | 0.320 | 0.341 | 0.339 | 0.342 | 0.332 | 0.167 | 0.310 |
Hefei | 1.149 | 1.048 | 0.605 | 0.674 | 0.723 | 1.011 | 1.114 | 1.109 | 1.070 | 0.218 | 0.872 |
Wuhu | 0.611 | 0.522 | 0.532 | 0.584 | 0.588 | 0.590 | 0.523 | 0.575 | 0.535 | 0.241 | 0.530 |
Bengbu | 0.506 | 0.563 | 0.566 | 0.493 | 0.552 | 0.623 | 0.505 | 0.511 | 0.471 | 0.247 | 0.504 |
Huainan | 0.602 | 0.551 | 0.586 | 0.489 | 0.516 | 0.492 | 0.428 | 0.435 | 0.403 | 0.223 | 0.473 |
Maanshan | 0.553 | 0.609 | 0.547 | 0.614 | 0.614 | 0.523 | 0.514 | 0.575 | 0.535 | 0.303 | 0.539 |
Tongling | 1.253 | 1.369 | 1.395 | 1.110 | 1.093 | 1.047 | 0.556 | 0.596 | 0.562 | 0.230 | 0.921 |
Anqing | 0.406 | 0.450 | 0.490 | 0.424 | 0.455 | 0.423 | 0.461 | 0.414 | 0.391 | 0.343 | 0.426 |
Chuzhou | 0.384 | 0.370 | 0.372 | 0.366 | 0.408 | 0.411 | 0.372 | 0.370 | 0.349 | 0.217 | 0.362 |
Lu’an | 0.426 | 0.319 | 0.333 | 0.319 | 0.332 | 0.356 | 0.399 | 0.381 | 0.342 | 0.179 | 0.339 |
Chizhou | 0.627 | 1.015 | 1.018 | 1.105 | 1.033 | 1.087 | 0.701 | 0.499 | 1.025 | 0.400 | 0.851 |
Xuancheng | 0.433 | 0.528 | 0.553 | 0.547 | 0.554 | 0.533 | 0.500 | 0.504 | 0.464 | 0.268 | 0.488 |
Average | 0.697 | 0.658 | 0.695 | 0.639 | 0.652 | 0.674 | 0.639 | 0.616 | 0.616 | 0.446 | 0.633 |
Fig. 2 Standard deviational ellipse and gravity center movement path of GWRUE in the four-city area in central China |
Table 3 Gravity center moving direction and distance of SDEs for GWRUE in the four-city area in central China from 2010 to 2019 |
Year | Gravity center coordinates | Moving angle (°) | Moving direction | Moving distance (km) | Moving speed (km yr-1) |
---|---|---|---|---|---|
2010 | 115.06°E, 29.76°N | - | - | - | - |
2011 | 115.09°E, 29.79°N | 57.57 | Northeast | 3.93 | 3.69 |
2012 | 114.98°E, 29.63°N | -114.41 | Southwest | 21.24 | 20.36 |
2013 | 115.01°E, 29.67°N | 66.43 | Northeast | 5.93 | 5.70 |
2014 | 115.06°E, 29.76°N | 66.46 | Northeast | 11.56 | 11.10 |
2015 | 115.06°E, 29.72°N | -87.65 | Southeast | 4.14 | 4.13 |
2016 | 114.99°E, 29.67°N | -130.26 | Southwest | 9.80 | 9.05 |
2017 | 115.10°E, 29.68°N | 13.33 | Northeast | 12.04 | 10.51 |
2018 | 115.09°E, 29.66°N | -111.07 | Southwest | 2.56 | 2.48 |
2019 | 114.92°E, 29.50°N | -124.49 | Southwest | 25.30 | 23.72 |
Table 4 SDE parameters of the spatial variation pattern of GWRUE in the four-city area in central China during 2010-2019 |
Year | Ellipse area (km2) | Ellipse azimuth θ ° (°) | Ellipse oblateness | Major axis (km) | Minor axis (km) |
---|---|---|---|---|---|
2010 | 191798.29 | 48.92 | 0.41 | 643.38 | 379.59 |
2011 | 195345.20 | 47.38 | 0.43 | 658.57 | 377.70 |
2012 | 197234.11 | 46.00 | 0.42 | 660.63 | 380.16 |
2013 | 197429.25 | 46.05 | 0.42 | 656.98 | 382.65 |
2014 | 193717.96 | 48.05 | 0.41 | 647.00 | 381.25 |
2015 | 195817.68 | 46.26 | 0.41 | 651.72 | 382.59 |
2016 | 196611.43 | 46.01 | 0.39 | 639.53 | 391.46 |
2017 | 192831.61 | 43.44 | 0.40 | 639.13 | 384.17 |
2018 | 192874.26 | 44.64 | 0.39 | 635.54 | 386.43 |
2019 | 172170.15 | 41.26 | 0.31 | 561.79 | 390.23 |
Fig. 3 Factor detection results of GWRUE spatial variations in the four-city area in central China from 2010 to 2019 |
Table 5 Interactive detection results of influencing factors for GWRUE spatial variations in the four-city area in central China in 2010 |
Factors | WRA | PD | EDL | MRP | PAWU | PIWU | PDWU | FTD | ITD | SEL | DDFAI | UDRE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
WRA | 0.086 | |||||||||||
PD | 0.467↖ | 0.253 | ||||||||||
EDL | 0.478↗ | 0.558↗ | 0.381 | |||||||||
MRP | 0.413↗ | 0.515↗ | 0.700↗ | 0.306 | ||||||||
PAWU | 0.478↖ | 0.390↗ | 0.483↗ | 0.634↖ | 0.257 | |||||||
PIWU | 0.516↖ | 0.384↗ | 0.521↗ | 0.570↗ | 0.372↗ | 0.265 | ||||||
PDWU | 0.223↖ | 0.298↗ | 0.472↖ | 0.426↖ | 0.390↖ | 0.457↖ | 0.034 | |||||
FTD | 0.460↖ | 0.551↗ | 0.488↗ | 0.506↗ | 0.490↗ | 0.482↗ | 0.442↖ | 0.294 | ||||
ITD | 0.479↖ | 0.462↗ | 0.517↗ | 0.600↖ | 0.465↗ | 0.579↖ | 0.445↖ | 0.470↗ | 0.237 | |||
SEL | 0.430↖ | 0.387↗ | 0.562↖ | 0.499↖ | 0.457↖ | 0.463↖ | 0.433↖ | 0.438↗ | 0.486↖ | 0.111 | ||
DDFAI | 0.410↖ | 0.457↖ | 0.566↖ | 0.589↖ | 0.380↖ | 0.412↖ | 0.310↖ | 0.451↖ | 0.550↖ | 0.364↖ | 0.061 | |
UDRE | 0.431↖ | 0.589↖ | 0.623↖ | 0.661↖ | 0.523↖ | 0.589↖ | 0.570↖ | 0.574↖ | 0.492↖ | 0.602↖ | 0.692↖ | 0.194 |
Note: ↘ represents a nonlinear weakening relationship; ↙ represents a univariate weakening relationship; ↖ represents a nonlinear enhancement relationship; ↗ represents a bivariate enhancement relationship; ← represents an independent relationship. The same below. |
Table 6 Interactive detection results of influencing factors for GWRUE spatial variations in the four-city area in central China in 2013 |
Factors | WRA | PD | EDL | MRP | PAWU | PIWU | PDWU | FTD | ITD | SEL | DDFAI | UDRE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
WRA | 0.195 | |||||||||||
PD | 0.448↖ | 0.102 | ||||||||||
EDL | 0.553↗ | 0.516↖ | 0.356 | |||||||||
MRP | 0.565↗ | 0.607↖ | 0.705↗ | 0.423 | ||||||||
PAWU | 0.496↖ | 0.545↖ | 0.584↗ | 0.604↗ | 0.226 | |||||||
PIWU | 0.432↖ | 0.293↗ | 0.478↗ | 0.597↗ | 0.388↗ | 0.164 | ||||||
PDWU | 0.431↖ | 0.372↖ | 0.500↖ | 0.611↖ | 0.403↖ | 0.254↗ | 0.063 | |||||
FTD | 0.463↖ | 0.363↖ | 0.468↗ | 0.559↗ | 0.350↗ | 0.300↗ | 0.425↖ | 0.101 | ||||
ITD | 0.508↖ | 0.496↖ | 0.679↖ | 0.589↗ | 0.488↗ | 0.513↖ | 0.497↖ | 0.587↖ | 0.265 | |||
SEL | 0.460↖ | 0.430↖ | 0.532↖ | 0.607↖ | 0.454↖ | 0.385↖ | 0.326↖ | 0.395↖ | 0.472↖ | 0.125 | ||
DDFAI | 0.340↖ | 0.275↖ | 0.537↖ | 0.601↖ | 0.448↖ | 0.344↖ | 0.422↖ | 0.371↖ | 0.441↖ | 0.288↖ | 0.039 | |
UDRE | 0.513↗ | 0.678↖ | 0.623↗ | 0.677↗ | 0.535↗ | 0.555↖ | 0.536↖ | 0.608↖ | 0.653↖ | 0.505↖ | 0.569↖ | 0.284 |
Table 7 Interactive detection results of influencing factors for GWRUE spatial variations in the four-city area in central China in 2016 |
Factors | WRA | PD | EDL | MRP | PAWU | PIWU | PDWU | FTD | ITD | SEL | DDFAI | UDRE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
WRA | 0.071 | |||||||||||
PD | 0.452↖ | 0.096 | ||||||||||
EDL | 0.487↖ | 0.500↗ | 0.369 | |||||||||
MRP | 0.318↖ | 0.449↖ | 0.593↖ | 0.165 | ||||||||
PAWU | 0.311↖ | 0.226↖ | 0.514↖ | 0.368↖ | 0.035 | |||||||
PIWU | 0.388↖ | 0.265↖ | 0.594↖ | 0.356↖ | 0.133↖ | 0.006 | ||||||
PDWU | 0.358↖ | 0.371↖ | 0.529↖ | 0.516↖ | 0.345↖ | 0.225↖ | 0.087 | |||||
FTD | 0.334↖ | 0.325↖ | 0.491↖ | 0.304↖ | 0.435↖ | 0.261↖ | 0.312↖ | 0.024 | ||||
ITD | 0.382↖ | 0.415↖ | 0.541↗ | 0.554↖ | 0.592↖ | 0.624↖ | 0.394↖ | 0.419↖ | 0.257 | |||
SEL | 0.259↖ | 0.347↖ | 0.440↗ | 0.522↖ | 0.297↖ | 0.306↖ | 0.314↖ | 0.227↖ | 0.588↖ | 0.055 | ||
DDFAI | 0.352↖ | 0.476↖ | 0.546↖ | 0.440↖ | 0.285↖ | 0.228↖ | 0.456↖ | 0.193↖ | 0.463↖ | 0.268↖ | 0.078 | |
UDRE | 0.352↖ | 0.360↖ | 0.529↖ | 0.595↖ | 0.392↖ | 0.299↖ | 0.430↖ | 0.592↖ | 0.491↖ | 0.275↖ | 0.289↖ | 0.070 |
Table 8 Interactive detection results of influencing factors for GWRUE spatial variations in the four-city area in central China in 2019 |
Factors | WRA | PD | EDL | MRP | PAWU | PIWU | PDWU | FTD | ITD | SEL | DDFAI | UDRE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
WRA | 0.110 | |||||||||||
PD | 0.259↖ | 0.078 | ||||||||||
EDL | 0.295↖ | 0.500↖ | 0.076 | |||||||||
MRP | 0.377↗ | 0.465↖ | 0.462↖ | 0.275 | ||||||||
PAWU | 0.229↗ | 0.280↖ | 0.389↖ | 0.352↗ | 0.078 | |||||||
PIWU | 0.257↗ | 0.273↗ | 0.406↖ | 0.399↗ | 0.236↗ | 0.156 | ||||||
PDWU | 0.673↖ | 0.280↖ | 0.522↖ | 0.685↖ | 0.324↖ | 0.663↖ | 0.052 | |||||
FTD | 0.326↖ | 0.337↖ | 0.212↖ | 0.437↖ | 0.498↖ | 0.569↖ | 0.195↖ | 0.037 | ||||
ITD | 0.297↖ | 0.324↖ | 0.391↖ | 0.409↗ | 0.702↖ | 0.758↖ | 0.346↖ | 0.274↖ | 0.118 | |||
SEL | 0.311↗ | 0.355↖ | 0.304↗ | 0.498↗ | 0.566↖ | 0.619↖ | 0.327↖ | 0.393↖ | 0.381↖ | 0.203 | ||
DDFAI | 0.451↖ | 0.417↖ | 0.487↖ | 0.438↖ | 0.554↖ | 0.565↖ | 0.269↖ | 0.186↗ | 0.283↗ | 0.371↖ | 0.120 | |
UDRE | 0.229↖ | 0.310↖ | 0.393↖ | 0.470↖ | 0.385↖ | 0.441↖ | 0.278↖ | 0.189↖ | 0.279↖ | 0.341↖ | 0.322↖ | 0.047 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
/
〈 | 〉 |