Journal of Resources and Ecology >
The Impact of the Spatial Agglomeration of Producer Services on Urban Productivity
Received date: 2022-01-07
Accepted date: 2022-05-20
Online published: 2023-02-21
Supported by
The National Natural Science Foundation of China(71903050)
The Key project of Hunan provincial Social Science Achievement Review Committee(XSP2023ZDI014)
China Postdoctoral Science Foundation(2021T140199)
The General Project of Hunan Natural Science Foundation(2021jj30072)
The Excellent Youth Project of Hunan Provincial Department of Education(21B0840)
The 65th Batch of General Funded Projects of China Postdoctoral Science Foundation(2019M652779)
The spatial cluster effect of productive service industry agglomeration and the urban productivity level in 286 prefecture level cities in China during 2008-2018 were analyzed by using the Moran index and the Lisa cluster diagram. The results show that the spatial correlation between productive service industry agglomeration and urban productivity is high, as the high-value areas of producer services agglomeration are generally the high-value agglomeration areas of China’s urban productivity level, while the low-value areas of producer services agglomeration are generally the low-value agglomeration areas of China’s urban productivity level. Furthermore, the spatial econometric model was used to test the effect of producer services agglomeration on urban productivity in China. The results show that producer services agglomeration can effectively improve urban productivity in China, but its impact on the productivity in different cities is quite variable. The producer services specialization agglomeration on urban productivity in eastern China is more obvious, while the positive effect of the diversification agglomeration of producer services on urban productivity is more obvious in the West, the Central and the Northeast, but the promotion of eastern cities is less apparent.
ZHOU You . The Impact of the Spatial Agglomeration of Producer Services on Urban Productivity[J]. Journal of Resources and Ecology, 2023 , 14(2) : 344 -356 . DOI: 10.5814/j.issn.1674-764x.2023.02.012
Table 1 Moran index values of producer services agglomeration and urban productivity from 2008 to 2018 |
Year | Professional agglomeration of producer services (SP) | Diversified agglomeration of producer services (DV) | Urban productivity (CP) | ||||||
---|---|---|---|---|---|---|---|---|---|
Moran | Value of Z | Value of P | Moran | Value of Z | Value of P | Moran | Value of Z | Value of P | |
2008 | 0.2397 | 2.7339 | 0.0280 | 0.3011 | 7.2405 | 0.0000 | 0.3934 | 8.9295 | 0.0000 |
2009 | 0.2786 | 3.1120 | 0.0060 | 0.3003 | 6.9101 | 0.0000 | 0.3875 | 8.1123 | 0.0000 |
2010 | 0.2817 | 3.2152 | 0.0059 | 0.2951 | 6.8716 | 0.0000 | 0.3648 | 8.3356 | 0.0000 |
2011 | 0.2919 | 3.3315 | 0.0028 | 0.3021 | 7.0123 | 0.0000 | 0.4064 | 8.1159 | 0.0000 |
2012 | 0.3012 | 3.6452 | 0.0021 | 0.3617 | 7.9803 | 0.0000 | 0.3983 | 5.0906 | 0.0892 |
2013 | 0.2498 | 2.8877 | 0.0168 | 0.2740 | 5.6689 | 0.0000 | 0.3896 | 7.9953 | 0.0000 |
2014 | 0.2325 | 2.4723 | 0.0310 | 0.2509 | 5.1562 | 0.0000 | 0.3778 | 7.8650 | 0.0000 |
2015 | 0.2401 | 2.7661 | 0.0179 | 0.2778 | 6.1101 | 0.0000 | 0.0988 | 8.1167 | 0.0000 |
2016 | 0.2652 | 3.0010 | 0.0067 | 0.2910 | 6.2391 | 0.0000 | 0.3994 | 7.6875 | 0.0000 |
2017 | 0.2633 | 2.9716 | 0.0071 | 0.3061 | 6.3744 | 0.0000 | 0.3769 | 7.3892 | 0.0000 |
2018 | 0.2382 | 2.5413 | 0.0307 | 0.2879 | 6.2305 | 0.0000 | 0.3790 | 8.0503 | 0.0000 |
Fig. 1 Lisa cluster diagrams of producer services specialization agglomeration (SP) and diversification agglomeration (DV) in 2008 and 2018 |
Fig. 2 Lisa cluster of urban productivity in 2008 and 2018 |
Table 2 Statistical values of sample data for the variables of 286 urban cities in China for 2008-2018 |
Variable | Mean | Standard deviation | Minimum | Maximum | Number of samples |
---|---|---|---|---|---|
CP (Urban productivity) | 0.3472 | 0.2512 | 0.0356 | 0.8911 | 3146 |
SP (Professional agglomeration of producer services) | 0.4811 | 0.2113 | 0.1210 | 1.7932 | 3146 |
DV (Diversified agglomeration of producer services) | 0.9112 | 0.2210 | 0.3733 | 1.9024 | 3146 |
K (Per capita capital investment, ×104 yuan) | 2.5732 | 7.4047 | 0.6333 | 11.0007 | 3146 |
L (Labor input, ×104 people) | 103.5178 | 1812.4915 | 9.7900 | 2115.7700 | 3146 |
MS (Market scale, yuan) | 8.9940 | 0.6581 | 6.8223 | 11.6972 | 3146 |
TRI (Investment in scientific and technological innovation, yuan) | 3.6400 | 11341.6000 | 0.0643 | 201.5000 | 3146 |
FDI (Foreign direct investment, yuan) | 800.2943 | 43221.3100 | 100.1142 | 3000.2855 | 3146 |
HC (Human capital) | 0.1142 | 0.1281 | 0.0120 | 0.3341 | 3146 |
TC (Traffic conditions, m2) | 7.1156 | 4.6531 | 0.6122 | 62.4785 | 3146 |
Table 3 Overall sample estimation results of producer services agglomeration affecting urban productivity |
Variable | Fixed effect model of SDM | No fixed effect model of SDM |
---|---|---|
Constant | -0.0381** | |
lnSP | 0.0843*** (2.4102) | 0.1312** (1.9715) |
lnDV | 0.0281** (3.3281) | 0.0648*** (2.4127) |
lnK | 0.2641 (0.7789) | 0.2081*** (4.4569) |
lnL | 0.4411*** (11.7983) | 0.4215*** (3.7563) |
lnMS | 0.0742*** (6.2673) | 0.2156*** (3.3168) |
lnTRI | 0.1039*** (2.7523) | 0.1235** (2.4353) |
lnFDI | -0.1068 (-1.5564) | -0.1218 (-0.4877) |
lnHC | 0.2560* (1.8743) | 0.1785** (2.1376) |
lnTC | 0.1649** (2.4494) | 0.1563*** (3.2923) |
ρ | 0.2103*** (4.3567) | 0.1988*** (3.1456) |
η1 | 0.0804*** (9.5648) | 0.0695*** (9.3405) |
η2 | 0.0383*** (7.3317) | 0.0306*** (6.2294) |
R2 | 0.6066 | 0.5291 |
Adjusted R2 | 0.5992 | 0.5826 |
LogL | 1358.1784 | 1531.0959 |
Note: The estimation results were determined by Matlab 7.6 and calculated by the software and spatial econometric module. *, **, *** significant at 10%, 5% and 1% significance levels, respectively. The values in parentheses are t statistics. |
Table 4 Estimation results by region of the sample space Dobbin model (SDM) of producer services agglomeration affecting urban productivity |
Variable | East | Central | Northeast | West | ||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | |
Constant | 0.1125 | 0.3116 | 0.4215 | 0.2341 | ||||
lnSP | 0.0985** (1.9968) | 0.1042* (1.7893) | 0.0796** (2.2675) | 0.0594** (2.3528) | 0.0690* (1.9907) | 0.0598* (2.1785) | 0.0694 (0.6894) | 0.1147 (1.1253) |
lnDV | 0.0396*** (4.1163) | 0.0476*** (3.3014) | 0.0795*** (3.2425) | 0.0586*** (3.3153) | 0.0677*** (2.9564) | 0.0821*** (2.9432) | 0.1452*** (7.7765) | 0.1514*** (6.8978) |
lnK | 0.0442 (1.2157) | 0.0336 (1.1098) | 0.4041** (2.3217) | 0.1654 (0.9876) | 0.4037** (2.0427) | 0.2178 (0.7976) | 0.2564*** (6.5371) | 0.1986 (0.5387) |
lnL | 0.6394*** (3.8475) | 0.5544** (2.0638) | 0.2626 (1.0495) | 0.2511 -1.5633) | 0.2494 (1.0436) | 0.26775 (1.6344) | 0.01008 (1.03941) | 0.01071 (0.60579) |
lnMS | 0.1524*** (5.9876) | 0.1165*** (3.3765) | 0.0578 (0.0958) | 0.0367** (2.1573) | 0.0648 (1.0987) | 0.0674** (2.1164) | 0.0018 (0.0768) | 0.0016 (0.0687) |
lnTRI | -0.0012 (-0.2154) | -0.0016 (-1.0382) | -0.0143 (-1.1674) | -0.198 (-1.0436) | -0.0095 (-0.7896) | -0.0185 (-1.2364) | 0.2114** (2.2171) | 0.1879** (2.3246) |
lnFDI | 0.0123** (1.9987) | 0.0063*** (3.3365) | 0.0065*** (2.3327) | 0.0127*** (5.4437) | 0.0138*** (2.3354) | 0.0102*** (3.0104) | 0.0134*** (3.3356) | 0.0189*** (4.0908) |
lnHC | 0.0146*** (4.4436) | 0.0325*** (3.5762) | 0.1546*** (5.6673) | 0.1352*** (6.2235) | 0.1653*** (4.3312) | 0.1431*** (6.7742) | 0.0103*** (4.3452) | 0.0123*** (3.9978) |
lnTC | 0.0125* (2.0104) | 0.0127* (1.7894) | 0.0462** (2.4674) | 0.0501** (2.3378) | 0.0499** (2.5236) | 0.0388** (2.2986) | 0.0097 (0.2638) | 0.0069 (0.7773) |
ρ | 0.3212*** (4.5534) | 0.2987*** (2.9890) | 0.1957*** (3.4563) | 0.2986*** (3.6675) | 0.2135*** (4.0908) | 0.2653*** (4.3356) | 0.3326*** (2.9909) | 0.3673*** (3.5647) |
η1 | 0.0783*** (11.2132) | 0.0706*** (10.2374) | 0.0771*** (8.3537) | 0.0652*** (8.2294) | 0.0661*** (2.6387) | 0.0581** (2.0584) | 0.0633*** (2.3337) | 0.0573** (1.9794) |
η2 | 0.0491*** (8.1109) | 0.0515*** (8.3183) | 0.0362*** (6.9226) | 0.0337*** (6.1081) | 0.0307*** (5.4508) | 0.0309*** (5.3209) | 0.0214** (2.0976) | 0.0198** (1.9932) |
R2 | 0.4126 | 0.3018 | 0.4673 | 0.3362 | 0.5126 | 0.3980 | 0.4997 | 0.3768 |
Adjust R2 | 0.3879 | 0.2243 | 0.4252 | 0.2997 | 0.4682 | 0.3256 | 0.4679 | 0.3120 |
Log L | 997.8767 | 1096.0095 | 1151.6673 | 1289.0094 | 1075.3326 | 1301.0678 | 1276.7786 | 1356.7892 |
Note: *, **, *** significant at 10%, 5% and 1% significance levels, respectively. |
Table 5 Robustness test of empirical results |
Variables | lnSP (1) | lnDV (2) | lnCP (after excluding outliers) (3) | lnCP (after deleting cities directly under the central government and autonomous regions) (4) | lnTFP (5) |
---|---|---|---|---|---|
L.lnCP | -0.007 (-0.004) | -0.008 (-0.004) | |||
lnSP | 0.0321** (1.9705) | ||||
lnDV | 0.0097* (1.7201) | ||||
lnSP (after excluding outliers) | 0.006 (0.004) | ||||
lnDV (after excluding outliers) | 0.016 (0.011) | ||||
lnSP (after deleting cities directly under the central government and autonomous regions) | 0.035* (1.693) | ||||
lnDV (after deleting cities directly under the central government and autonomous regions) | 0.041* (1.884) | ||||
R2 | 0.23 | 0.31 | 0.39 | 0.24 | 0.28 |
Number of samples | 3146 | 3146 | 2856 | 2695 | 3146 |
Note: L.lnCP represents the urban productivity level of the previous year; Control variables, time and regional fixed effects are added to each regression. *, ** mean significant at 10%, 5% significance levels, respectively. |
Fig. 3 Broken line chart of average level changes of producer services agglomeration in 286 cities in China |
Table 6 Common trend test of producer service agglomeration and urban productivity change |
Variable | lnSPt-1 | lnDVt-1 | lnSPt-2 | lnDVt-2 | lnSPt-3 | lnDVt-3 | lnSPt-4 | lnDVt-4 | lnSPt-5 | lnDVt-5 | lnSPt-6 | lnDVt-6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
lnCP | 0.016 (0.041) | 0.009 (0.033) | 0.014 (0.037) | 0.011 (0.062) | 0.014 (0.077) | 0.012 (0.069) | 0.017 (0.045) | 0.011 (0.043) | 0.017 (0.053) | 0.013 (0.057) | 0.019 (0.080) | 0.013 (0.064) |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
/
〈 | 〉 |