Articles

Livestock Dynamic Responses to Climate Change in Alpine Grasslands on the Northern Tibetan Plateau: Forage Consumption and Time-lag Effects

Expand
  • 1. Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Global Change and Earth System Sciences, Beijing Normal University, Beijing 100875, China

Received date: 2016-10-30

  Online published: 2017-01-20

Supported by

Chinese Academy of Sciences project (XDB03030400), National Basic Research Program of China (2010CB951704), National Sciences Foundation of China (41171044)

Abstract

Climate change and forage-intake are important components of livestock population systems, but our knowledge about the effects of changes in these properties on livestock is limited, particularly on the Northern Tibetan Plateau. Based on corresponding independent models (CASA and TEM), a human-induced NPP (NPPH) value and forage-intake threshold were obtained to determine their influences on livestock population fluctuation and regrowth on the plateau. The intake threshold value provided compatible results with livestock population performance. If the forage-intake was greater than the critical value of 1.9 (kg DM d-1 sheep-1), the livestock population increased; otherwise, the livestock population decreased. It takes four years to transfer a disturbance in primary productivity to the next trophic level. The relationships between livestock population and NPPH value determined population dynamics via the forage-intake value threshold. Improved knowledge on lag effects will advance our understanding of drivers of climatic changes on livestock population dynamics.

Cite this article

FENG Yunfei, ZHANG Xianzhou, SHI Peili, FU Gang, ZHANG Yangjian, ZHAO Guangshuai, ZENG Chaoxu, ZHANG Jing . Livestock Dynamic Responses to Climate Change in Alpine Grasslands on the Northern Tibetan Plateau: Forage Consumption and Time-lag Effects[J]. Journal of Resources and Ecology, 2017 , 8(1) : 88 -96 . DOI: 10.5814/j.issn.1674-764x.2017.01.011

References

[1] Allred B W, Fuhlendorf S D, Hovick T J et al . 2013. Conservation implications of native and introduced ungulates in a changing climate. Global Change Biology, 19(6): 1875-83.
[2] Barnes M K, Norton B E, Maeno M et al . 2008. Paddock size and stocking density affect spatial heterogeneity of grazing. Rangeland Ecol Manag, 61(4): 380-388.
[3] Bestelmeyer B T, Estell R E.Havstad K M. 2012. Big Questions Emerging from a Century of Rangeland Science and Management. Rangeland Ecol Manag , 65(6): 543-544.
[4] Cao J, Holden N M, Lu X T et al . 2011. The effect of grazing management on plant species richness on the Qinghai-Tibetan Plateau. Grass Forage Sci , 66(3): 333-336.
[5] Caughley G, Sinclair R G.Grigg G C. 1979. Trend of Kangaroo Populations in New-South-Wales, Australia. J Wildlife Manage , 43(3): 775-777.
[6] Chen B X, Zhang X Z, Tao J et al . 2014. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agr Forest Meteorol , 189: 11-18.
[7] Craine J M, Elmore A J, Olson K C et al . 2010. Climate change and cattle nutritional stress. Global Change Biol , 16(10): 2901-2911.
[8] Derry J F. Boone R B. 2010. Grazing systems are a result of equilibrium and non-equilibrium dynamics. J Arid Environ , 74(2): 307-309.
[9] Desta S. Coppock D L. 2002. Cattle population dynamics in the southern Ethiopian rangelands, 1980-97. J Range Manage , 55(5): 439-451.
[10] Dumont B, Carrere P. D'Hour P. 2002. Foraging in patchy grasslands: diet selection by sheep and cattle is affected by the abundance and spatial distribution of preferred species. Anim Res , 51(5): 367-381.
[11] Fan J W, Shao Q Q, Liu J Y et al . 2010. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environ Monit Assess , 170(1-4): 571-84.
[12] Ferraro D O. Oesterheld M. 2002. Effect of defoliation on grass growth. A quantitative review. Oikos , 98(1): 125-133.
[13] Foster D R, Knight D H.Franklin J F. 1998. Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems , 1(6): 497-510.
[14] Garcia-Valdes R, Zavala M A, Araujo M B et al . 2013. Chasing a moving target: projecting climate change-induced shifts in non-equilibrial tree species distributions. J Ecol , 101(2): 441-453.
[15] Harris R B. 2010. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J Arid Environ , 74(1): 1-12.
[16] Higgins P A T, Mastrandrea M D. Schneider S H. 2002. Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria. Philos T Roy Soc B , 357(1421): 647-655.
[17] Hunt L P. 2008. Safe pasture utilisation rates as a grazing management tool in extensively grazed tropical savannas of northern Australia. Rangeland J , 30(3): 305-315.
[18] Illius A W. O'Connor T G. 1999. On the relevance of nonequilibrium concepts to arid and semiarid grazing systems. Ecol Appl , 9(3): 798- 813.
[19] Illius A W. O'Connor T G. 2000. Resource heterogeneity and ungulate population dynamics. Oikos , 89(2): 283-294.
[20] Jiang Y B, de Bie C A J M, Wang T J et al . 2013. Hyper-temporal remote sensing helps in relating epiphyllous liverworts and evergreen forests. J Veg Sci , 24(2): 214-226.
[21] Jonsson P.Eklundh L. 2004. TIMESAT-a program for analyzing time-series of satellite sensor data. Comput Geosci-Uk , 30(8): 833-845.
[22] Jouven M. Baumont R. 2008. Simulating grassland utilization in beef suckler systems to investigate the trade-offs between production and floristic diversity. Agr Syst , 96(1-3): 260-272.
[23] Kulakowski D. Veblen T T. 2007. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests. Ecology , 88(3): 759-769.
[24] Laska G. 2001. The disturbance and vegetation dynamics: a review and an alternative framework. Plant Ecol , 157(1): 77-99.
[25] Lestingi A, De Giorgio D, Montemurro F et al . 2007. Effects of bio- activators on yield and quality composition of triticale forage as an animal food resource. J Food Agric Environ , 5(1): 164-171.
[26] Li X J, Zhang X Z, Wu J S et al . 2011. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environ Earth Sci , 64(7): 1911-1919.
[27] Mori A S. 2011. Ecosystem management based on natural disturbances: hierarchical context and non-equilibrium paradigm. J Appl Ecol , 48(2): 280-292.
[28] Nozieres M O, Moulin C H.Dedieu B. 2011. The herd, a source of flexibility for livestock farming systems faced with uncertainties? Animal , 5(9): 1442-57.
[29] O' Neill R V. 2001. Is it time to bury the ecosystem concept? (With full military honors of course!). Ecology , 82(12): 3275-3284.
[30] Oesterheld M. 1991. Effect of Stress and Time for Recovery on the Amount of Compensatory Growth after Grazing. Oecologia , 85(3): 305-313.
[31] Owen-Smith N. 2002. Credible models for herbivore-vegetation systems: towards an ecology of equations. S Afr J Sci , 98(9-10): 445-449.
[32] Pickett S T A. Cadenasso M L. 1995. Landscape Ecology-Spatial Heterogeneity in Ecological-Systems. Science , 269(5222): 331-334.
[33] Ren H Y, Han G D, Ohm M et al . 2015. Do sheep grazing patterns affect ecosystem functioning in steppe grassland ecosystems in Inner Mongolia? Agr Ecosyst Environ , 213: 1-10.
[34] Retzer V. Reudenbach C. 2005. Modelling the carrying capacity and coexistence of pika and livestock in the mountain steppe of the South Gobi, Mongolia. Ecol Model , 189(1-2): 89-104.
[35] Richardson F D, Hahn B D.Hoffman M T. 2005. On the dynamics of grazing systems in the semi-arid succulent Karoo: The relevance of equilibrium and non-equilibrium concepts to the sustainability of semi-arid pastoral systems. Ecol Model , 187(4): 491-512.
[36] Riedel J L, Bernues A.Casasus I. 2013. Livestock Grazing Impacts on Herbage and Shrub Dynamics in a Mediterranean Natural Park. Rangeland Ecol Manag, 66(2): 224-233.
[37] Sasaki T, Okubo S, Okayasu T et al . 2011. Indicator species and functional groups as predictors of proximity to ecological thresholds in Mongolian rangelands. Plant Ecol , 212(2): 327-342.
[38] Stenseth N C.Mysterud A. 2003. Adaptive herbivore ecology - From resources to populations in variable environments. Science , 299(5606): 518-518.
[39] van de Koppel J, Rietkerk M, van Langevelde F et al . 2002. Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Am Nat , 159(2): 209-218.
[40] van Rooyen M W, Le Roux A, Geldenhuys C et al . 2015. Long-term vegetation dynamics (40 yr) in the Succulent Karoo, South Africa: effects of rainfall and grazing. Appl Veg Sci , 18(2): 311-322.
[41] Vetter S. 2005. Rangelands at equilibrium and non-equilibrium: recent developments in the debate. J Arid Environ , 62(2): 321-341.
[42] Waudby H P, Petit S.Robinson G. 2013. Pastoralists' knowledge of plant palatability and grazing indicators in an arid region of South Australia. Rangeland J , 35(4): 445-454.
[43] Wimberly M C. Spies T A. 2002. Landscape- vs gap-level controls on the abundance of a fire-sensitive, late-successional tree species. Ecosystems , 5(3): 232-243.
[44] Wu J G.Loucks O L. 1995. From balance of nature to hierarchical patch dynamics: A paradigm shift in ecology. Q Rev Biol , 70(4): 439-466.
[45] Wu J S, Shen Z X.Zhang X Z. 2014a. Precipitation and species composition primarily determine the diversity-productivity relationship of alpine grasslands on the Northern Tibetan Plateau. Alpine Bot , 124(1): 13-25.
[46] Wu J S, Zhang X Z, Shen Z X et al . 2013. Grazing-Exclusion Effects on Aboveground Biomass and Water-Use Efficiency of Alpine Grasslands on the Northern Tibetan Plateau. Rangeland Ecol Manag , 66(4): 454- 461.
[47] Wu J S, Zhang X Z, Shen Z X et al . 2014b. Effects of livestock exclusion and climate change on aboveground biomass accumulation in alpine pastures across the Northern Tibetan Plateau. Chinese Sci Bull , 59(32): 4332-4340.
[48] Wu Y B, Tan H C, Deng Y C et al . 2010. Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling. Global Change Biol , 16(8): 2322-2333.
[49] Yang Y H, Fang J Y, Ji C J et al . 2009. Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci , 20(1): 177-184.
[50] Yang Y H, Fang J Y, Ma W H et al . 2010. Large-scale pattern of biomass partitioning across China's grasslands. Global Ecol Biogeogr , 19(2): 268-277.
[51] Young K D. Van Aarde R J. 2010. Density as an explanatory variable of movements and calf survival in savanna elephants across southern Africa. J Anim Ecol , 79(3): 662-673.
[52] Zeng C X, Wu J S.Zhang X Z. 2015. Effects of Grazing on Above-vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau. Plos One , 10(8).
[53] Zhou H K, Tang Y H, Zhao X Q et al . 2006. Long-term grazing alters species composition and biomass of a shrub meadow on the Qinghai-Tibet Plateau. Pak J Bot , 38(4): 1055-1069.
Outlines

/