[1] Atlas R, Lucchesi R. 2000. File Specific for GEOS-DAS Celled Output. Greenbelt: Goddard Space Flight Center. http://polar.gsfc.nasa.gov/index.php/.
[2] Baldocchi D, Falge E, Gu L, et al . 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society ; 82(11): 2415?2434.
[3] Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology ; 9(4): 479?492.
[4] Beer C, Reichstein M, Tomelleri E, et al . 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science ; 329(5993): 834?8.
[5] Buchmann N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry ; 32(11-12): 1625?1635.
[6] Coops NC, Black TA, Jassal RS, et al . 2007. Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand. Remote Sensing of Environment ; 107(3): 385?401.
[7] Dong J, Xiao X, Wagle P, et al . 2015. Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sensing of Environment ; 162: 154?168.
[8] Dorrepaal E, Toet S, van Logtestijn RSP, et al . 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature ; 460(7255): 616?619.
[9] Falge E, Baldocchi D, Olson R, et al . 2001. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology ; 107(1): 71?77.
[10] Gao Y, Yu G, Yan H, et al . 2014. A MODIS-based Photosynthetic Capacity Model to estimate gross primary production in Northern China and the Tibetan Plateau. Remote Sensing of Environment ; 148): 108?118.
[11] Gitelson AA, Viña A, Verma SB, et al . 2006. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres ; 111(D8): n/a-n/a.
[12] Han G, Yang L, Yu J, et al . 2012. Environmental Controls on Net Ecosystem CO 2 Exchange Over a Reed (Phragmites australis) Wetland in the Yellow River Delta, China. Estuaries and Coasts ; 36(2): 401?413.
[13] Heinsch FA, Reeves M, Votava P, et al . 2003. GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm. MOD17 User's Guide): 1?57.
[14] Hirota M, Tang Y, Hu Q, et al . 2006. Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau. Ecosystems ; 9(4): 673?688.
[15] Jenkins JP, Richardson AD, Braswell BH, et al . 2007. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agricultural and Forest Meteorology ; 143(1-2): 64?79.
[16] Kaimai JC, Gaynor JE. 1991. Another look at sonic thermometry. Boundary- Layer Meteorology ; 56(4): 401?410.
[17] Kato T, Tang Y. 2008. Spatial variability and major controlling factors of CO2sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Global Change Biology ; 14(10): 2333?2348.
[18] Kato T, Tang Y, Gu S, et al . 2006. Temperature and biomass influences on interannual changes in CO 2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology ; 12(7): 1285?1298.
[19] Lasslop G, Reichstein M, Papale D, et al . 2010. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology ; 16(1): 187?208.
[20] Leuning R. 2006. The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Boundary-Layer Meteorology ; 123(2): 263?267.
[21] Li C, He HL, Liu M, et al . 2008. The design and application of CO 2 flux data processing system at ChinaFLUX. Geo-information Science ; 10(5): 557?565. (in chinese)
[22] Li F, Wang X, Zhao J, et al . 2013. A method for estimating the gross primary production of alpine meadows using MODIS and climate data in China. International Journal of Remote Sensing ; 34(23): 8280?8300.
[23] Li Z, Yu G, Xiao X, et al . 2007. Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data. Remote Sensing of Environment ; 107(3): 510?519.
[24] Liu J, Sun OJ, Jin H, et al . 2011. Application of two remote sensing GPP algorithms at a semiarid grassland site of North China. Journal of Plant Ecology .
[25] Liu Z, Wang L, Wang S. 2014. Comparison of Different GPP Models in China Using MODIS Image and ChinaFLUX Data. Remote Sensing ; 6(10): 10215.
[26] Lloyd J, Taylor JA. 1994. On the Temperature-Dependence of Soil Respiration. Functional Ecology ; 8(3): 315?323.
[27] Monteith JL. 1972. Solar Radiation and Productivity in Tropical Ecosystems. Journal of Applied Ecology ; 9(3): 747?766.
[28] Niu B, He Y, Zhang X, et al . 2016. Tower-Based Validation and Improvement of MODIS Gross Primary Production in an Alpine Swamp Meadow on the Tibetan Plateau. Remote Sensing ; 8(7): 592.
[29] Polsenaere P, Lamaud E, Lafon V, et al . 2012. Spatial and temporal CO 2 exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production. Biogeosciences ; 9(1): 249?268.
[30] Raich JW, Rastetter EB, Melillo JM, et al . 1991. Potential Net Primary Productivity in South America: Application of a Global Model. Ecological Applications ; 1(4): 399?429.
[31] Reichstein M, Falge E, Baldocchi D, et al . 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology ; 11(9): 1424? 1439.
[32] Reichstein M, Tenhunen JD, Roupsard O, et al . 2002. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Functional Ecology ; 16(1): 27?39.
[33] Rossini M, Cogliati S, Meroni M, et al . 2012. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences ; 9(7): 2565?2584.
[34] Ruimy A, Jarvis PG, Baldocchi DD, et al . 1995. CO 2 fluxes over plant canopies and solar radiation: a review. In: Begon. IM, Fitter. AH, editors. Advances in Ecological Research . Volume 26. Academic Press, pp. 1?68.
[35] Ruimy A, Kergoat L, Bondeau A, et al . 1999. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency. Global Change Biology ; 5(S1): 56?64.
[36] Running SW, Thornton PE, Nemani R, et al . 2000. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. In: Sala OE, Jackson RB, Mooney HA, Howarth RW, editors. Methods in Ecosystem Science . Springer New York, New York, NY, pp. 44?57.
[37] Sims DA, Rahman AF, Cordova VD, et al . 2008. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment ; 112(4): 1633?1646.
[38] Sims DA, Rahman AF, Cordova VD, et al . 2006. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. Journal of Geophysical Research: Biogeosciences ; 111(G4): n/a-n/a.
[39] Tang X, Li H, Huang N, et al . 2015. A comprehensive assessment of MODIS-derived GPP for forest ecosystems using the site-level FLUXNET database. Environmental Earth Sciences ; 74(7): 5907?5918.
[40] Turner DP, Ritts WD, Cohen WB, et al . 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biology ; 11(4): 666? 684.
[41] van't Hoff JH. 1898. Über die zunehmende Bedeutung der anorganischen Chemie. Vortrag, gehalten auf der 70. Versammlung der Gesellschaft deutscher Naturforscher und Ärzte zu Düsseldorf. Zeitschrift für anorganische Chemie ; 18(1): 1?13.
[42] Verma M, Friedl MA, Law BE, et al . 2015. Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agricultural and Forest Meteorology ; 214-215): 416?429.
[43] Wagle P, Gowda PH, Xiao X, et al . 2016a. Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI. Agricultural and Forest Meteorology ; 222): 87?97.
[44] Wagle P, Zhang Y, Jin C, et al . 2016b. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize. Ecological Applications ; 26(4): 1211?1222.
[45] Wang GX, Qian J, Cheng GD, et al . 2002. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of The Total Environment ; 291(1-3): 207?217.
[46] Wang X, Ma M, Huang G, et al . 2012. Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China. International Journal of Applied Earth Observation and Geoinformation ; 17): 94?101.
[47] Webb EK, Pearman GI, Leuning R. 1980. Correction of Flux Measurements for Density Effects Due to Heat and Water-Vapor Transfer. Quarterly Journal of the Royal Meteorological Society ; 106(447): 85? 100.
[48] Wilczak JM, Oncley SP, Stage SA. 2001. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology ; 99(1): 127?150.
[49] Wohlfahrt G, Anderson-Dunn M, Bahn M, et al . 2008. Biotic, abiotic, and management controls on the net ecosystem CO 2 exchange of European mountain grassland ecosystems. Ecosystems ; 11(8): 1338?1351.
[50] Wu C, Chen JM, Desai AR, et al . 2012. Remote sensing of canopy light use efficiency in temperate and boreal forests of North America using MODIS imagery. Remote Sensing of Environment ; 118): 60?72.
[51] Wu C, Chen JM, Huang N. 2011. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sensing of Environment ; 115(12): 3424?3435.
[52] Xiao X, Hollinger D, Aber J, et al . 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment ; 89(4): 519?534.
[53] Xiao X, Zhang Q, Saleska S, et al . 2005. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment ; 94(1): 105?122.
[54] Yan H, Fu Y, Xiao X, et al . 2009. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture, Ecosystems & Environment ; 129(4): 391?400.
[55] Yu GR, Wen XF, Sun XM, et al . 2006. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology ; 137(3-4): 125?137.
[56] Yu GR, Zhu XJ, Fu YL, et al . 2013. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology ; 19(3): 798?810.
[57] Zeeman MJ, Hiller R, Gilgen AK, et al . 2010. Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agricultural and Forest Meteorology ; 150(4): 519?530.
[58] Zhang Y, Wang C, Bai W, et al . 2010. Alpine wetlands in the Lhasa River Basin, China. Journal of Geographical Sciences ; 20(3): 375?388.
[59] Zhao L, Li J, Xu S, et al . 2010. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences ; 7(4): 1207?1221.
[60] Zhou L, Zhou G, Jia Q. 2009. Annual cycle of CO 2 exchange over a reed ( Phragmites australis ) wetland in Northeast China. Aquatic Botany ; 91(2): 91?98.