Satellite-based Estimation of Gross Primary Production in an Alpine Swamp Meadow on the Tibetan Plateau: A Multi-model Comparison

  • 1. Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan;
    4. College of Global Change and Earth System Sciences, Beijing Normal University, Beijing 100875, China

Received date: 2016-10-31

  Online published: 2017-01-20

Supported by

National Natural Science Foundation of China (41571042, 40603024)


Alpine swamp meadows on the Tibetan Plateau, with the highest soil organic carbon content across the globe, are extremely vulnerable to climate change. To accurately and continually quantify the gross primary production (GPP) is critical for understanding the dynamics of carbon cycles from site-scale to global scale. Eddy covariance technique (EC) provides the best approach to measure the site-specific carbon flux, while satellite-based models can estimate GPP from local, small scale sites to regional and global scales. However, the suitability of most satellite-based models for alpine swamp meadow is unknown. Here we tested the performance of four widely-used models, the MOD17 algorithm (MOD), the vegetation photosynthesis model (VPM), the photosynthetic capacity model (PCM), and the alpine vegetation model (AVM), in providing GPP estimations for a typical alpine swamp meadow as compared to the GPP estimations provided by EC-derived GPP. Our results indicated that all these models provided good descriptions of the intra-annual GPP patterns (R2>0.89, P<0.0001), but hardly agreed with the inter-annual GPP trends. VPM strongly underestimated the GPP of alpine swamp meadow, only accounting for 54.0% of GPP_EC. However, the other three satellite-based GPP models could serve as alternative tools for tower-based GPP observation. GPP estimated from AVM captured 94.5% of daily GPP_EC with the lowest average RMSE of 1.47 g C m-2. PCM slightly overestimated GPP by 12.0% while MODR slightly underestimated by 8.1% GPP compared to the daily GPP_EC. Our results suggested that GPP estimations for this alpine swamp meadow using AVM were superior to GPP estimations using the other relatively complex models.

Cite this article

NIU Ben, ZHANG Xianzhou, HE Yongtao, SHI Peili, FU Gang, DU Mingyuan, ZHANG Yangjian, ZONG Ning, ZHANG Jing, WU Jianshuang . Satellite-based Estimation of Gross Primary Production in an Alpine Swamp Meadow on the Tibetan Plateau: A Multi-model Comparison[J]. Journal of Resources and Ecology, 2017 , 8(1) : 57 -66 . DOI: 10.5814/j.issn.1674-764x.2017.01.008


[1] Atlas R, Lucchesi R. 2000. File Specific for GEOS-DAS Celled Output. Greenbelt: Goddard Space Flight Center.
[2] Baldocchi D, Falge E, Gu L, et al . 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society ; 82(11): 2415?2434.
[3] Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology ; 9(4): 479?492.
[4] Beer C, Reichstein M, Tomelleri E, et al . 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science ; 329(5993): 834?8.
[5] Buchmann N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry ; 32(11-12): 1625?1635.
[6] Coops NC, Black TA, Jassal RS, et al . 2007. Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand. Remote Sensing of Environment ; 107(3): 385?401.
[7] Dong J, Xiao X, Wagle P, et al . 2015. Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sensing of Environment ; 162: 154?168.
[8] Dorrepaal E, Toet S, van Logtestijn RSP, et al . 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature ; 460(7255): 616?619.
[9] Falge E, Baldocchi D, Olson R, et al . 2001. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology ; 107(1): 71?77.
[10] Gao Y, Yu G, Yan H, et al . 2014. A MODIS-based Photosynthetic Capacity Model to estimate gross primary production in Northern China and the Tibetan Plateau. Remote Sensing of Environment ; 148): 108?118.
[11] Gitelson AA, Viña A, Verma SB, et al . 2006. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres ; 111(D8): n/a-n/a.
[12] Han G, Yang L, Yu J, et al . 2012. Environmental Controls on Net Ecosystem CO 2 Exchange Over a Reed (Phragmites australis) Wetland in the Yellow River Delta, China. Estuaries and Coasts ; 36(2): 401?413.
[13] Heinsch FA, Reeves M, Votava P, et al . 2003. GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm. MOD17 User's Guide): 1?57.
[14] Hirota M, Tang Y, Hu Q, et al . 2006. Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau. Ecosystems ; 9(4): 673?688.
[15] Jenkins JP, Richardson AD, Braswell BH, et al . 2007. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agricultural and Forest Meteorology ; 143(1-2): 64?79.
[16] Kaimai JC, Gaynor JE. 1991. Another look at sonic thermometry. Boundary- Layer Meteorology ; 56(4): 401?410.
[17] Kato T, Tang Y. 2008. Spatial variability and major controlling factors of CO2sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Global Change Biology ; 14(10): 2333?2348.
[18] Kato T, Tang Y, Gu S, et al . 2006. Temperature and biomass influences on interannual changes in CO 2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology ; 12(7): 1285?1298.
[19] Lasslop G, Reichstein M, Papale D, et al . 2010. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology ; 16(1): 187?208.
[20] Leuning R. 2006. The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Boundary-Layer Meteorology ; 123(2): 263?267.
[21] Li C, He HL, Liu M, et al . 2008. The design and application of CO 2 flux data processing system at ChinaFLUX. Geo-information Science ; 10(5): 557?565. (in chinese)
[22] Li F, Wang X, Zhao J, et al . 2013. A method for estimating the gross primary production of alpine meadows using MODIS and climate data in China. International Journal of Remote Sensing ; 34(23): 8280?8300.
[23] Li Z, Yu G, Xiao X, et al . 2007. Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data. Remote Sensing of Environment ; 107(3): 510?519.
[24] Liu J, Sun OJ, Jin H, et al . 2011. Application of two remote sensing GPP algorithms at a semiarid grassland site of North China. Journal of Plant Ecology .
[25] Liu Z, Wang L, Wang S. 2014. Comparison of Different GPP Models in China Using MODIS Image and ChinaFLUX Data. Remote Sensing ; 6(10): 10215.
[26] Lloyd J, Taylor JA. 1994. On the Temperature-Dependence of Soil Respiration. Functional Ecology ; 8(3): 315?323.
[27] Monteith JL. 1972. Solar Radiation and Productivity in Tropical Ecosystems. Journal of Applied Ecology ; 9(3): 747?766.
[28] Niu B, He Y, Zhang X, et al . 2016. Tower-Based Validation and Improvement of MODIS Gross Primary Production in an Alpine Swamp Meadow on the Tibetan Plateau. Remote Sensing ; 8(7): 592.
[29] Polsenaere P, Lamaud E, Lafon V, et al . 2012. Spatial and temporal CO 2 exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production. Biogeosciences ; 9(1): 249?268.
[30] Raich JW, Rastetter EB, Melillo JM, et al . 1991. Potential Net Primary Productivity in South America: Application of a Global Model. Ecological Applications ; 1(4): 399?429.
[31] Reichstein M, Falge E, Baldocchi D, et al . 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology ; 11(9): 1424? 1439.
[32] Reichstein M, Tenhunen JD, Roupsard O, et al . 2002. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Functional Ecology ; 16(1): 27?39.
[33] Rossini M, Cogliati S, Meroni M, et al . 2012. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences ; 9(7): 2565?2584.
[34] Ruimy A, Jarvis PG, Baldocchi DD, et al . 1995. CO 2 fluxes over plant canopies and solar radiation: a review. In: Begon. IM, Fitter. AH, editors. Advances in Ecological Research . Volume 26. Academic Press, pp. 1?68.
[35] Ruimy A, Kergoat L, Bondeau A, et al . 1999. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency. Global Change Biology ; 5(S1): 56?64.
[36] Running SW, Thornton PE, Nemani R, et al . 2000. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. In: Sala OE, Jackson RB, Mooney HA, Howarth RW, editors. Methods in Ecosystem Science . Springer New York, New York, NY, pp. 44?57.
[37] Sims DA, Rahman AF, Cordova VD, et al . 2008. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment ; 112(4): 1633?1646.
[38] Sims DA, Rahman AF, Cordova VD, et al . 2006. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. Journal of Geophysical Research: Biogeosciences ; 111(G4): n/a-n/a.
[39] Tang X, Li H, Huang N, et al . 2015. A comprehensive assessment of MODIS-derived GPP for forest ecosystems using the site-level FLUXNET database. Environmental Earth Sciences ; 74(7): 5907?5918.
[40] Turner DP, Ritts WD, Cohen WB, et al . 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biology ; 11(4): 666? 684.
[41] van't Hoff JH. 1898. Über die zunehmende Bedeutung der anorganischen Chemie. Vortrag, gehalten auf der 70. Versammlung der Gesellschaft deutscher Naturforscher und Ärzte zu Düsseldorf. Zeitschrift für anorganische Chemie ; 18(1): 1?13.
[42] Verma M, Friedl MA, Law BE, et al . 2015. Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agricultural and Forest Meteorology ; 214-215): 416?429.
[43] Wagle P, Gowda PH, Xiao X, et al . 2016a. Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI. Agricultural and Forest Meteorology ; 222): 87?97.
[44] Wagle P, Zhang Y, Jin C, et al . 2016b. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize. Ecological Applications ; 26(4): 1211?1222.
[45] Wang GX, Qian J, Cheng GD, et al . 2002. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of The Total Environment ; 291(1-3): 207?217.
[46] Wang X, Ma M, Huang G, et al . 2012. Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China. International Journal of Applied Earth Observation and Geoinformation ; 17): 94?101.
[47] Webb EK, Pearman GI, Leuning R. 1980. Correction of Flux Measurements for Density Effects Due to Heat and Water-Vapor Transfer. Quarterly Journal of the Royal Meteorological Society ; 106(447): 85? 100.
[48] Wilczak JM, Oncley SP, Stage SA. 2001. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology ; 99(1): 127?150.
[49] Wohlfahrt G, Anderson-Dunn M, Bahn M, et al . 2008. Biotic, abiotic, and management controls on the net ecosystem CO 2 exchange of European mountain grassland ecosystems. Ecosystems ; 11(8): 1338?1351.
[50] Wu C, Chen JM, Desai AR, et al . 2012. Remote sensing of canopy light use efficiency in temperate and boreal forests of North America using MODIS imagery. Remote Sensing of Environment ; 118): 60?72.
[51] Wu C, Chen JM, Huang N. 2011. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sensing of Environment ; 115(12): 3424?3435.
[52] Xiao X, Hollinger D, Aber J, et al . 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment ; 89(4): 519?534.
[53] Xiao X, Zhang Q, Saleska S, et al . 2005. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment ; 94(1): 105?122.
[54] Yan H, Fu Y, Xiao X, et al . 2009. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture, Ecosystems & Environment ; 129(4): 391?400.
[55] Yu GR, Wen XF, Sun XM, et al . 2006. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology ; 137(3-4): 125?137.
[56] Yu GR, Zhu XJ, Fu YL, et al . 2013. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology ; 19(3): 798?810.
[57] Zeeman MJ, Hiller R, Gilgen AK, et al . 2010. Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agricultural and Forest Meteorology ; 150(4): 519?530.
[58] Zhang Y, Wang C, Bai W, et al . 2010. Alpine wetlands in the Lhasa River Basin, China. Journal of Geographical Sciences ; 20(3): 375?388.
[59] Zhao L, Li J, Xu S, et al . 2010. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences ; 7(4): 1207?1221.
[60] Zhou L, Zhou G, Jia Q. 2009. Annual cycle of CO 2 exchange over a reed ( Phragmites australis ) wetland in Northeast China. Aquatic Botany ; 91(2): 91?98.