Contents

Climatic and Topographical Factors Affecting the Vegetative Carbon Stock of Rangelands in Arid and Semiarid Regions of China

Expand
  • 1. College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China;
    2. Key Laboratory of Grassland Ecology System (Gansu Agricultural University), Ministry of Education, Lanzhou 730070, China;
    3. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China;
    4. ASRC Federal InuTeq, Earth Resources Observation and Science (EROS) Center, Sioux Falls SD57198, USA

Received date: 2016-03-24

  Revised date: 2016-09-05

  Online published: 2016-11-15

Supported by

National Natural Science Foundation of China (30960264 and 31160475), Science and technology program of Gansu province (1107RJYA058), open project of Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education (CYZS-2011014) and Fund of technology innovation commemorated Sheng Tongsheng in Gansu Agricultural University (GSAU-STS-1304 and GSAU-STS-1505).

Abstract

Rangeland systems play an important role in ecological stabilization and the terrestrial carbon cycle in arid and semiarid regions. However, little is known about the vegetative carbon dynamics and climatic and topographical factors that affect vegetative carbon stock in these rangelands. Our goal was to assess vegetative carbon stock by examining meteorological data in conjunction with NDVI (normalized difference vegetation index) time series datasets from 2001-2012. An improved CASA (Carnegie Ames Stanford Approach) model was then applied to simulate the spatiotemporal dynamic variation of vegetative carbon stock, and analyze its response to climatic and topographical factors. We estimated the vegetative carbon stock of rangeland in Gansu province, China to be 4.4× 1014 gC, increasing linearly at an annual rate of 9.8×1011 gC. The mean vegetative carbon density of the whole rangeland was 136.5 gC m-2. Vegetative carbon density and total carbon varied temporally and spatially and were highly associated with temperature, precipitation and solar radiation. Vegetative carbon density reached the maximal value on elevation at 2500-3500 m, a slope of >30°and easterly aspect. The effect of precipitation, temperature and solar radiation on the vegetative carbon density of five rangeland types (desert and salinized meadow, steppe, alpine meadow, shrub and tussock, and marginal grassland in the forest) depends on the acquired quantity of water and heat for rangeland plants at all spatial scales. The results of this study provide new evidence for explaining spatiotemporal heterogeneity in vegetative carbon dynamics and responses to global change for rangeland vegetative carbon stock, and offer a theoretical and practical basis for grassland agriculture management in arid and semiarid regions.

Cite this article

REN Zhengchao, ZHU Huazhong, SHI Hua, LIU Xiaoni . Climatic and Topographical Factors Affecting the Vegetative Carbon Stock of Rangelands in Arid and Semiarid Regions of China[J]. Journal of Resources and Ecology, 2016 , 7(6) : 418 -429 . DOI: 10.5814/j.issn.1674-764x.2016.06.002

References

1 Bai Y F, Wu J G, Xing Q, et al. 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology , 89(8): 2140-2153.
2 Briggs J M, A K Knapp. 1995. Interannual variability in primary production in tallgrass prairie-climate, soil-moisture, topographic position, and fire as determinants of aboveground biomass. American Journal of Botany , 82(8): 1024-1030.
3 Cao M K, F I Woodward. 1998. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change . Global Change Biology , 4(2): 185-198.
4 Chou W W, W L Silver, R D Jackson, et al. 2008. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biology , 14(6): 1382-1394.
5 Epstein H E, W K Lauenroth, I C Burke. 1997. Effects of temperature and soil texture on ANPP in the U.S. Great Plains. Ecology , 78(8): 2628-2631.
6 Epstein H E, W K Lauenroth, I C Burke, et al . 1996. Ecological response of dominant grasses along two climatic gradients in the Great Plains of the United States. Journal of Vegetation Science , 7(7): 777-788.
7 Fan J W, Zhong H P, W Harris, et al . 2008. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Climatic Change , 86(3-4): 375-396.
8 Fang J Y, Liu G H, Xu S L. 1996. Carbon reservoir of terrestrial ecosystem in China. In: Wang G C, Wen Y P, et al . Monitoring and Relevant Process of Greenhouse Gas Concentration and Emission (in Chinese). Beijing: China Environmental Science Publishing House.
9 Fang J Y, Piao S L, Tang Z Y, et al . 2001. Interannual variability in net primary production and precipitation. Science , 293(5536): 1723.
10 Fang J Y, Piao S L, Zhou L, et al . 2005. Precipitation patterns alter growth of temperate vegetation. Geophysical Research Letters , 32(21): 365-370.
11 Fang J Y, Yang Y H, Ma W H, et al . 2010. Ecosystem carbon stocks and their changes in China’s grasslands. Science China Life Sciences , 53(7): 757-765.
12 Gao Q Z, Wan Y F, Li Y E, et al . 2007. Trends of grassland NPP and its response to human activity in Northern Tibet. Acta ecologica sinica , 27: 4612-4619. (in Chinese)
13 Hall D O, J M O Scurlock. 1991. Climate Change and Productivity of Natural Grasslands . Annals of Botany , 67: 49-55.
14 Heimann M, C D Keeling. 1986. Meridional eddy diffusion model of the transport of atmospheric carbon dioxide: 1. the seasonal carbon cycle over the tropical Pacific Ocean. Journal of Geophysical Research Atmospheres , 91(D7): 7765-7781.
15 Jones M B, A Donnelly. 2005. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO 2 . New Phytologist , 164(3): 423-439.
16 Knapp A K, P A Fay, J M Blair, et al . 2002. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science , 298(5601): 2202-2205.
17 Lauenroth W K, O E Sala. 1992. Long-term forage production of North- American shortgrass steppe. Ecological Applications , 2(4): 397-403.
18 Li K R, Wang S Q, Cao M K. 2004. Vegetation and soil carbon storage in China. Science China Earth Sciences , 47(1): 49-57.
19 Lindkvist L, S Lindqvist. 1997. Spatial and temporal variability of nocturnal summer frost in elevated complex terrain. Agricultural and Forest Meteorology , 87(2-3): 139-153.
20 Liu X N, Wang H X, Guo J, et al . 2014. Spatially-explicit modelling of grassland classes-an improved method of integrating a climate-based classification model with interpolated climate surfaces. The rangeland journal , 36(2): 175-183.
21 Ma W H, Han M, Lin X, et al . 2006. Carbon storage in vegetation of grasslands in Inner Mongolia. Journal of Arid Land Resources and Environment , 20(3): 192-195. (in Chinese)
22 Ma W H, Yang Y H, He J S, et al . 2008. Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science China Life Sciences , 51(3): 263-270.
23 Ma W H, Fang J Y, Yang Y H, et al . 2010a. Biomass carbon stocks and their changes in northern China’s grassland during 1982-2006. Science China Life Sciences , 53(7): 841-850.
24 Ma W H, He J S, Yang Y H, et al . 2010b. Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography , 19(2): 233-243.
25 Mokany K, R J Raison, A S Prokushkin. 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology , 12(1): 84-96.
26 Monteith J L. 1972. Solar radiation and productivity in Tropical ecosystems. Journal of Applied Ecology , 9(3): 747-766.
27 Myneni R B, C D Keeling, C J Tucker, et al . 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature , 386(6626): 698-702.
28 Ni J. 2001. Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Climatic Change , 49(3): 339-358.
29 Ni J. 2002. Carbon storage in grasslands of China. Journal of Arid Environments , 50(2): 205-218.
30 Piao S L, Fang J Y, Zhou L M, et al . 2007. Changes in biomass carbon stocks in China?s grasslands between 1982 and 1999. Global Biogeochemical Cycles , 21(2): 1-10.
31 Ren Z C, Zhu H Z, Shi H, et al . 2011. Spatio-temporal distribution pattern of vegetation net primary productivity and its response to climate change in Buryatiya Republic, Russia. Journal of Resources and Ecology , 2(3): 257-265.
32 Ren Z C, Zhu H Z, Liu X N. 2012. Spatio-temporal differentiation of land covers on annual scale and its response to climate and topography in arid and semiarid region. Transactions of the CSAE , 28(15): 205-214. (in Chinese)
33 Sala O E, W K Lauenroth, I Burke. 1996. Carbon budgets of temperate grasslands and the effects of global change. In: Breymeyer A I, D O Hall, J M Melillo, et al . Global Change: Effects on Coniferous Forests and Grasslands. New York: John Wildy & Sons Ltd.
34 Scurlock J M O, D O Hall. 1998. The global carbon sink: a grassland perspective. Global Change Biology , 4(2): 229-233.
35 Scurlock J M O, K Johnson, R J Olson. 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology , 8(8): 736-753.
36 Sitch S, B Smith, I C Prentice, et al . 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology , 9(2): 161-185.
37 Taesomabat W, N Sriwongsitanon. 2009. Areal rainfall estimation using spatial interpolation techniques. Science Asia , 35(3): 268-275.
38 Titlyanova A A, I P Romanova, N P Kosykh, et al . 1999. Pattern and process in above-ground and below-ground components of grassland ecosystems. Journal of Vegetation Science , 10(10): 307-320.
39 Tucker C J, D A Slayback, J E Pinzon, et al . 2001. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology , 45(4): 184-190.
40 Turner D P, W D Ritts, W B Cohen, et al . 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biology , 11(4): 666-684.
41 Wang L, Niu K, Yang Y H, et al . 2010. Patterns of above- and belowground biomass allocation in China’s grassland: evidence from individual-level observations. Science China Life Sciences , 53(7): 851-857.
42 Wang Y, Xia W T, Liang T G. 2011. Spatial-temporal dynamics simulation of grassland net primary productivity using a satellite data-driven CASA model in Gannan prefecture. Acta prataculture sinica , 20(4): 316-324. (in Chinese)
43 Willmott C, S Robeson, W Philpot. 1985. Small-scale climate maps: a sensitivity and analysis of some common assumptions associated with grid-point interpolation and contouring. American Cartographer , 12(1): 5-16.
44 Yan H, A N Henry, F H Mike, et al . 2005. Spatial interpolation of monthly mean climate data for China. International Journal of Climatology , 25(10): 1369-1379.
45 Yang Y H, Fang J Y, Ma W H, et al . 2008. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters , 35(23): 705-707.
46 Yang Y H, Fang J Y, Ji C J, et al . 2009. Above- and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science , 20(1): 177-184.
47 Yang Y H, Fang J Y, Ma W H, et al . 2010. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography , 19(2): 268-277.
48 Zou D F, Feng Q S, Liang T G. 2011. Research on grassland classification and NPP in Gannan region. Remote sensing technology and application , 26(5): 577-583. (in Chinese)
Outlines

/