Content of Climate and Ecosystems in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Relationships between Genetic Diversity of Vascular Plant Species and Climate Factors
    TAN Jingfang, WAN Jizhong, LUO Fangli, YU Feihai
    Journal of Resources and Ecology    2018, 9 (6): 663-672.   DOI: 10.5814/j.issn.1674-764x.2018.06.009
    Abstract267)   HTML1)    PDF (572KB)(115)      
    Genetic diversity is crucial for plants to respond to global climate change, and exploring relationships between genetic diversity and climatic factors may help predict how global climate change will shape the genetic diversity of plants in the future. So far, however, the extent and magnitude of the impact of climatic factors on the genetic diversity of plants has not been clarified. We collected data from 68 published papers on two widely used measures of genetic diversity of populations (average expected heterozygosity ( He) and average observed heterozygosity ( Ho)) and on localities of populations of 79 vascular plants, and extracted data on 19 climatic factors from WorldClim. We then explored the relationships between measures of genetic diversity and climatic factors using linear regressions. He of plant populations was significantly correlated with climatic factors in 58.7% (44) of the 75 species that used He as a measure of genetic diversity, and Ho was correlated with climatic factors in 65.1% (41) of the 63 species that used this genetic diversity measure. In general, Mean Temperature of Wettest Quarter, Precipitation Seasonality, Precipitation of Driest Quarter and Temperature Seasonality played a vital role in shaping He, and Ho was mostly correlated with Precipitation of Warmest Quarter, Mean Temperature of Wettest Quarter, Precipitation of Driest Quarter and Precipitation of Driest Month. Also, the proportion of the significant correlations between genetic diversity of populations and climatic factors was higher for woody than for herbaceous species, and different climatic factors played different roles in shaping genetic diversity of these two growth forms. Our results suggest that climate may play an important role in shaping genetic diversity of plant populations, that climatic change in the future may alter genetic diversity of plants, and that genetic diversity of different plant forms may respond to climatic change differently.
    Reference | Related Articles | Metrics
    Response Differences of MODIS- NDVI and MODIS- EVI to Climate Factors
    PAN Xia, GAO Yong, WANG Ji
    Journal of Resources and Ecology    2018, 9 (6): 673-680.   DOI: 10.5814/j.issn.1674-764x.2018.06.010
    Abstract378)   HTML0)    PDF (883KB)(118)      
    To evaluate and provide an appropriate theoretical direction for research into climate-vegetation interactions using meteorological station data at different time scales, we examined differences between the Normalized Difference Vegetation Index ( NDVI) and Enhanced Vegetation Index ( EVI) and their responses to climate factors. We looked for correlations between data extracted from MOD13Q1 remote sensing images and meteorological station data for the two indexes. The results showed that even though NDVI and EVI are derived from the same remote sensing image, their response to climate factors was significantly different. In the same meteorological station, the correlation coefficients for NDVI, EVI and climate factors were different; correlation coefficients between NDVI, EVI and climate factors varied with meteorological station. In addition, there was a lag effect for responses of NDVI to average minimum temperature, average temperature, average vapor pressure, minimum relative humidity, extreme wind speed, maximum wind speed, average wind speed and average station air-pressure. EVI had a lag only for average minimum temperature, average vapor pressure, extreme wind speed, maximum wind speed and average station air-pressure. The lag period was variable, but most were in the -3 period. Different vegetation types had different sensitivities to climate. The correlation between meteorological stations and vegetation requires more attention in future research.
    Reference | Related Articles | Metrics
Share: