Journal of Resources and Ecology ›› 2022, Vol. 13 ›› Issue (3): 428-441.DOI: 10.5814/j.issn.1674-764x.2022.03.008
• Ecosystem Assessment • Previous Articles Next Articles
ZHAO Menglei1(), YANG Zeng1, ZHAO Jingnan1,2,*(
), WANG Yan1,2, MA Xiaolei1, GUO Jian1
Received:
2020-11-12
Accepted:
2021-10-20
Online:
2022-05-30
Published:
2022-04-18
Contact:
ZHAO Jingnan
About author:
ZHAO Menglei, E-mail: dreamleir@163.com
Supported by:
ZHAO Menglei, YANG Zeng, ZHAO Jingnan, WANG Yan, MA Xiaolei, GUO Jian. Life Cycle Assessment of Biodegradable Polylactic Acid (PLA) Plastic Packaging Products—Taking Tianjin, China as a Case Study[J]. Journal of Resources and Ecology, 2022, 13(3): 428-441.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2022.03.008
Term | Land lease | Corn seeds | Fertilizer | Harvest fee | Machine farming/Manual farming/Pesticides | Total |
---|---|---|---|---|---|---|
Cost (103 yuan ha‒1) | 3.00 | 0.80 | 1.50 | 1.00 | 1.00 | 7.30 |
Table 1 Cost and energy analysis of raw corn
Term | Land lease | Corn seeds | Fertilizer | Harvest fee | Machine farming/Manual farming/Pesticides | Total |
---|---|---|---|---|---|---|
Cost (103 yuan ha‒1) | 3.00 | 0.80 | 1.50 | 1.00 | 1.00 | 7.30 |
Type | Substances | Life cycle stages | ||||||
---|---|---|---|---|---|---|---|---|
Raw material acquisition | Transportation of raw material | Product production | Product use | Final disposal | Total | |||
Landfill | Incineration | |||||||
Resources | Coal | 2.05×102 | 1.99 | 2.88×103 | 0.13 | 7.75×10‒2 | 9.48×10‒3 | 3.08×103 |
Crude oil | 16.10 | 55.00 | 4.84×102 | 3.65 | 2.14 | 0.26 | 5.61×102 | |
Natural gas* | 1.59 | 3.31×10‒3 | 35.30 | 2.20×10‒4 | 1.29×10‒4 | 1.58×10‒5 | 36.80 | |
CO2** | ‒4.15×103 | 0 | 0 | 0 | 0 | 0 | ‒4.15×103 | |
Air emissions | CO2 | 1.59×103 | 1.40×102 | 2.84×103 | 7.42 | 9.12 | 5.91×102 | 5.18×103 |
CO | 0.91 | 0.74 | 12.80 | 0.93 | 0.54 | 6.64×10‒2 | 15.98 | |
CH4 | 0.59 | 1.43×10‒2 | 11.90 | 1.95×10‒3 | 2.26 | 1.40×10‒4 | 14.77 | |
N2O | 21.70 | 4.05×10‒3 | 0.00 | 5.40×10‒4 | 3.17×10‒4 | 3.88×10‒5 | 21.70 | |
SO2 | 2.24 | 0.15 | 41.60 | 4.97×10‒3 | 2.92×10‒3 | 3.57×10‒4 | 43.99 | |
NOX | 6.31 | 3.15 | 34.20 | 6.40×10‒2 | 3.75×10‒2 | 4.59×10‒3 | 43.76 | |
SOX | 4.12 | 0 | 0 | 0 | 0 | 0 | 4.12 | |
PO43‒ | 0.35 | 0 | 0 | 0 | 0 | 0 | 0.35 | |
NO3‒ | 4.76 | 0 | 0 | 0 | 0 | 0 | 4.76 | |
NH3 | 4.23 | 0 | 0 | 0 | 0 | 0 | 4.23 | |
NMVOC | 1.09×10‒2 | 0.56 | 1.49 | 0.18 | 0.11 | 1.29×10‒2 | 2.35 | |
Dust | 0.30 | 1.47×102 | 0.40 | 25.30 | 14.80 | 1.81 | 2.29×102 | |
Water emissions | Cu | 1.61 | 0 | 0 | 0 | 0 | 0 | 1.61 |
Zn | 2.31 | 0 | 0 | 0 | 0 | 0 | 2.31 | |
Cd | 0.33 | 0 | 0 | 0 | 0 | 0 | 0.33 | |
Pb | 1.76×10‒2 | 0 | 0 | 0 | 0 | 0 | 1.76×10‒2 | |
Waste liquid | 54.70 | 32.10 | 6.08×103 | 2.14 | 1.25 | 0.15 | 6.17×103 | |
Waste sludge | 3.44 | 0.32 | 4.46×102 | 2.15×10‒2 | 1.26×10‒2 | 1.54×10‒3 | 4.50×102 |
Table 2 LCA inventory of one ton PLA plastic packing products (ISO14040:2006) (Unit: kg t?1)
Type | Substances | Life cycle stages | ||||||
---|---|---|---|---|---|---|---|---|
Raw material acquisition | Transportation of raw material | Product production | Product use | Final disposal | Total | |||
Landfill | Incineration | |||||||
Resources | Coal | 2.05×102 | 1.99 | 2.88×103 | 0.13 | 7.75×10‒2 | 9.48×10‒3 | 3.08×103 |
Crude oil | 16.10 | 55.00 | 4.84×102 | 3.65 | 2.14 | 0.26 | 5.61×102 | |
Natural gas* | 1.59 | 3.31×10‒3 | 35.30 | 2.20×10‒4 | 1.29×10‒4 | 1.58×10‒5 | 36.80 | |
CO2** | ‒4.15×103 | 0 | 0 | 0 | 0 | 0 | ‒4.15×103 | |
Air emissions | CO2 | 1.59×103 | 1.40×102 | 2.84×103 | 7.42 | 9.12 | 5.91×102 | 5.18×103 |
CO | 0.91 | 0.74 | 12.80 | 0.93 | 0.54 | 6.64×10‒2 | 15.98 | |
CH4 | 0.59 | 1.43×10‒2 | 11.90 | 1.95×10‒3 | 2.26 | 1.40×10‒4 | 14.77 | |
N2O | 21.70 | 4.05×10‒3 | 0.00 | 5.40×10‒4 | 3.17×10‒4 | 3.88×10‒5 | 21.70 | |
SO2 | 2.24 | 0.15 | 41.60 | 4.97×10‒3 | 2.92×10‒3 | 3.57×10‒4 | 43.99 | |
NOX | 6.31 | 3.15 | 34.20 | 6.40×10‒2 | 3.75×10‒2 | 4.59×10‒3 | 43.76 | |
SOX | 4.12 | 0 | 0 | 0 | 0 | 0 | 4.12 | |
PO43‒ | 0.35 | 0 | 0 | 0 | 0 | 0 | 0.35 | |
NO3‒ | 4.76 | 0 | 0 | 0 | 0 | 0 | 4.76 | |
NH3 | 4.23 | 0 | 0 | 0 | 0 | 0 | 4.23 | |
NMVOC | 1.09×10‒2 | 0.56 | 1.49 | 0.18 | 0.11 | 1.29×10‒2 | 2.35 | |
Dust | 0.30 | 1.47×102 | 0.40 | 25.30 | 14.80 | 1.81 | 2.29×102 | |
Water emissions | Cu | 1.61 | 0 | 0 | 0 | 0 | 0 | 1.61 |
Zn | 2.31 | 0 | 0 | 0 | 0 | 0 | 2.31 | |
Cd | 0.33 | 0 | 0 | 0 | 0 | 0 | 0.33 | |
Pb | 1.76×10‒2 | 0 | 0 | 0 | 0 | 0 | 1.76×10‒2 | |
Waste liquid | 54.70 | 32.10 | 6.08×103 | 2.14 | 1.25 | 0.15 | 6.17×103 | |
Waste sludge | 3.44 | 0.32 | 4.46×102 | 2.15×10‒2 | 1.26×10‒2 | 1.54×10‒3 | 4.50×102 |
Impact category characterization factor | ADP | GWP | AP | EP | POCP | HTP | TETP |
---|---|---|---|---|---|---|---|
Coal | 27.91 | - | - | - | - | - | - |
Crude oil | 41.87 | - | - | - | - | - | - |
Natural gas | 38.84 | - | - | - | - | - | - |
CO2 | - | 1.00 | - | - | - | - | - |
CO | - | 2.00 | - | - | 2.70×10‒2 | - | - |
CH4 | - | 21.00 | - | - | 7.00×10‒3 | - | - |
N2O | - | 3.10×102 | - | 0.27 | - | - | - |
SO2 | - | - | 1.00 | - | - | 9.60×10‒2 | - |
NOX | - | - | 0.70 | 0.13 | 2.80×10‒2 | 1.20 | - |
SOX | - | - | 0.80 | - | - | - | - |
PO43‒ | - | - | - | 1.00 | - | - | - |
NO3‒ | - | - | - | 0.42 | - | - | - |
NH3 | - | - | 1.88 | 0.33 | - | - | - |
NMVOC | - | - | - | - | 0.42 | - | - |
Dust | - | - | - | - | - | 0.82 | - |
Cu | - | - | - | - | - | - | 14.00 |
Zn | - | - | - | - | - | - | 25.00 |
Cd | - | - | - | - | - | - | 1.70×102 |
Pb | - | - | - | - | - | - | 33.00 |
Table 3 The characterization factors of environmental impact (ISO14040:2006)
Impact category characterization factor | ADP | GWP | AP | EP | POCP | HTP | TETP |
---|---|---|---|---|---|---|---|
Coal | 27.91 | - | - | - | - | - | - |
Crude oil | 41.87 | - | - | - | - | - | - |
Natural gas | 38.84 | - | - | - | - | - | - |
CO2 | - | 1.00 | - | - | - | - | - |
CO | - | 2.00 | - | - | 2.70×10‒2 | - | - |
CH4 | - | 21.00 | - | - | 7.00×10‒3 | - | - |
N2O | - | 3.10×102 | - | 0.27 | - | - | - |
SO2 | - | - | 1.00 | - | - | 9.60×10‒2 | - |
NOX | - | - | 0.70 | 0.13 | 2.80×10‒2 | 1.20 | - |
SOX | - | - | 0.80 | - | - | - | - |
PO43‒ | - | - | - | 1.00 | - | - | - |
NO3‒ | - | - | - | 0.42 | - | - | - |
NH3 | - | - | 1.88 | 0.33 | - | - | - |
NMVOC | - | - | - | - | 0.42 | - | - |
Dust | - | - | - | - | - | 0.82 | - |
Cu | - | - | - | - | - | - | 14.00 |
Zn | - | - | - | - | - | - | 25.00 |
Cd | - | - | - | - | - | - | 1.70×102 |
Pb | - | - | - | - | - | - | 33.00 |
Impact category | Unit | Reference value |
---|---|---|
Abiotic depletion potential fossil fuels (ADP) | MJ eq yr‒1 | 3.80×1014 |
Global warming potential (GWP) | kg‒CO2 eq yr‒1 | 4.22×1013 |
Acidification potential (AP) | kg‒SO2 eq yr‒1 | 2.39×1011 |
Eutrophication potential (EP) | kg‒PO43‒ eq yr‒1 | 1.58×1011 |
Photochemical ozone formation potential (POCP) | kg‒C2H4 eq yr‒1 | 3.68×1010 |
Human toxicity potential (HTP) | kg‒(1,4)‒DCB eq yr‒1 | 2.58×1012 |
Terrestrial ecotoxicity potential (TETP) | kg‒(1,4)‒DCB eq yr‒1 | 1.09×1012 |
Table 4 The reference values of the normalization (ISO14040:2006)
Impact category | Unit | Reference value |
---|---|---|
Abiotic depletion potential fossil fuels (ADP) | MJ eq yr‒1 | 3.80×1014 |
Global warming potential (GWP) | kg‒CO2 eq yr‒1 | 4.22×1013 |
Acidification potential (AP) | kg‒SO2 eq yr‒1 | 2.39×1011 |
Eutrophication potential (EP) | kg‒PO43‒ eq yr‒1 | 1.58×1011 |
Photochemical ozone formation potential (POCP) | kg‒C2H4 eq yr‒1 | 3.68×1010 |
Human toxicity potential (HTP) | kg‒(1,4)‒DCB eq yr‒1 | 2.58×1012 |
Terrestrial ecotoxicity potential (TETP) | kg‒(1,4)‒DCB eq yr‒1 | 1.09×1012 |
Impact category | Weighting factor |
---|---|
Abiotic depletion potential (ADP fossil fuels) | 0.12 |
Global warming potential (GWP) | 0.23 |
Acidification potential (AP) | 0.04 |
Eutrophication potential (EP) | 0.07 |
Photochemical ozone formation potential (POCP) | 0.05 |
Human toxicity potential (HTP) | 0.20 |
Terrestrial ecotoxicity potential (TETP) | 0.11 |
Table 5 Weighting factors of the impact categories (ISO14040:2006)
Impact category | Weighting factor |
---|---|
Abiotic depletion potential (ADP fossil fuels) | 0.12 |
Global warming potential (GWP) | 0.23 |
Acidification potential (AP) | 0.04 |
Eutrophication potential (EP) | 0.07 |
Photochemical ozone formation potential (POCP) | 0.05 |
Human toxicity potential (HTP) | 0.20 |
Terrestrial ecotoxicity potential (TETP) | 0.11 |
Impact category | Substances | Mass (kg) | Characteristic factor | Characterization result | Reference value | Normalization result | Weighting factor | Environmental impact value | Percentage of the total (%) |
---|---|---|---|---|---|---|---|---|---|
ADP | Coal | 3.08×103 | 27.91 | 1.11×105 | 3.80×1014 | 2.92×10‒10 | 0.12 | 3.36×10‒11 | 24.83 |
Crude oil | 5.61×102 | 41.87 | |||||||
Natural gas | 36.80 | 38.84 | |||||||
GWP | CO2 | 1.03×103 | 1.00 | 8.11×103 | 4.22×1013 | 1.92×10‒10 | 0.23 | 4.42×10‒11 | 32.63 |
CO | 15.90 | 2.00 | |||||||
CH4 | 14.80 | 21.00 | |||||||
N2O | 21.70 | 3.10×102 | |||||||
AP | SO2 | 44.00 | 1.00 | 85.90 | 2.39×1011 | 3.60×10‒10 | 0.04 | 1.44×10‒11 | 10.64 |
NOX | 43.80 | 0.70 | |||||||
SOX | 4.12 | 0.80 | |||||||
NH3 | 4.23 | 1.88 | |||||||
EP | PO43‒ | 0.35 | 1.00 | 15.30 | 1.58×1011 | 9.67×10‒11 | 0.07 | 6.77×10‒12 | 5.00 |
N2O | 21.70 | 0.27 | |||||||
NOX | 43.80 | 0.13 | |||||||
NO3‒ | 4.76 | 0.42 | |||||||
NH3 | 4.23 | 0.33 | |||||||
POCP | CO | 15.90 | 2.70×10‒2 | 2.74 | 3.68×1010 | 7.44×10‒11 | 0.05 | 3.72×10‒12 | 2.75 |
CH4 | 14.80 | 7.00×10‒3 | |||||||
NOX | 43.80 | 2.80×10‒2 | |||||||
NMVOC | 2.35 | 0.42 | |||||||
HTP | SO2 | 44.00 | 9.60×10‒2 | 2.44×102 | 2.58×1012 | 9.48×10‒11 | 0.20 | 1.90×10‒11 | 14.01 |
NOX | 43.80 | 1.20 | |||||||
Dust | 2.29×102 | 0.82 | |||||||
TETP | Cu | 1.61 | 14.00 | 1.36×102 | 1.09×1012 | 1.25×10‒10 | 0.11 | 1.37×10‒11 | 10.14 |
Zn | 2.31 | 25.00 | |||||||
Cd | 0.33 | 1.70×102 | |||||||
Pb | 1.76×10‒2 | 33.00 |
Table 6 The characterization and normalization results of the LCA inventory (ISO14040:2006)
Impact category | Substances | Mass (kg) | Characteristic factor | Characterization result | Reference value | Normalization result | Weighting factor | Environmental impact value | Percentage of the total (%) |
---|---|---|---|---|---|---|---|---|---|
ADP | Coal | 3.08×103 | 27.91 | 1.11×105 | 3.80×1014 | 2.92×10‒10 | 0.12 | 3.36×10‒11 | 24.83 |
Crude oil | 5.61×102 | 41.87 | |||||||
Natural gas | 36.80 | 38.84 | |||||||
GWP | CO2 | 1.03×103 | 1.00 | 8.11×103 | 4.22×1013 | 1.92×10‒10 | 0.23 | 4.42×10‒11 | 32.63 |
CO | 15.90 | 2.00 | |||||||
CH4 | 14.80 | 21.00 | |||||||
N2O | 21.70 | 3.10×102 | |||||||
AP | SO2 | 44.00 | 1.00 | 85.90 | 2.39×1011 | 3.60×10‒10 | 0.04 | 1.44×10‒11 | 10.64 |
NOX | 43.80 | 0.70 | |||||||
SOX | 4.12 | 0.80 | |||||||
NH3 | 4.23 | 1.88 | |||||||
EP | PO43‒ | 0.35 | 1.00 | 15.30 | 1.58×1011 | 9.67×10‒11 | 0.07 | 6.77×10‒12 | 5.00 |
N2O | 21.70 | 0.27 | |||||||
NOX | 43.80 | 0.13 | |||||||
NO3‒ | 4.76 | 0.42 | |||||||
NH3 | 4.23 | 0.33 | |||||||
POCP | CO | 15.90 | 2.70×10‒2 | 2.74 | 3.68×1010 | 7.44×10‒11 | 0.05 | 3.72×10‒12 | 2.75 |
CH4 | 14.80 | 7.00×10‒3 | |||||||
NOX | 43.80 | 2.80×10‒2 | |||||||
NMVOC | 2.35 | 0.42 | |||||||
HTP | SO2 | 44.00 | 9.60×10‒2 | 2.44×102 | 2.58×1012 | 9.48×10‒11 | 0.20 | 1.90×10‒11 | 14.01 |
NOX | 43.80 | 1.20 | |||||||
Dust | 2.29×102 | 0.82 | |||||||
TETP | Cu | 1.61 | 14.00 | 1.36×102 | 1.09×1012 | 1.25×10‒10 | 0.11 | 1.37×10‒11 | 10.14 |
Zn | 2.31 | 25.00 | |||||||
Cd | 0.33 | 1.70×102 | |||||||
Pb | 1.76×10‒2 | 33.00 |
Impact category | Raw material acquisition | Transportation of raw material | Product production | Product use | Final disposal | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADP | Normalization result | 1.70×10‒11 | 6.21×10‒12 | 2.68×10‒10 | 4.12×10‒13 | 2.71×10‒13 | 2.92×10‒10 | |||||||
Environmental impact value | 1.95×10‒12 | 7.14×10‒13 | 3.09×10‒11 | 4.74×10‒14 | 3.12×10‒14 | 3.36×10‒11 | ||||||||
Percent (%) | 5.81 | 2.13 | 91.82 | 0.14 | 0.09 | 100.00 | ||||||||
GWP | Normalization result | 9.92×10‒11 | 3.39×10‒12 | 7.38×10‒11 | 2.24×10‒13 | 1.54×10‒11 | 1.92×10‒10 | |||||||
Environmental impact value | 2.28×10‒11 | 7.79×10‒13 | 1.70×10‒11 | 5.16×10‒14 | 3.53×10‒12 | 4.42×10‒11 | ||||||||
Percent (%) | 51.67 | 1.76 | 38.45 | 0.12 | 8.00 | 100.00 | ||||||||
AP | Normalization result | 7.50×10‒11 | 9.86×10‒12 | 2.75×10‒10 | 2.08×10‒13 | 1.37×10‒13 | 3.60×10‒10 | |||||||
Environmental impact value | 3.00×10‒12 | 3.94×10‒13 | 1.10×10‒11 | 8.34×10‒15 | 5.49×10‒15 | 1.44×10‒11 | ||||||||
Percent (%) | 20.84 | 2.74 | 76.33 | 0.06 | 0.04 | 100.00 | ||||||||
EP | Normalization result | 6.59×10‒11 | 2.59×10‒12 | 2.81×10‒11 | 5.35×10‒14 | 3.52×10‒14 | 9.67×10‒11 | |||||||
Environmental impact value | 4.61×10‒12 | 1.82×10‒13 | 1.97×10‒12 | 3.74×10‒15 | 2.46×10‒15 | 6.77×10‒12 | ||||||||
Percent (%) | 68.15 | 2.68 | 29.07 | 0.06 | 0.04 | 100.00 | ||||||||
POCP | Normalization result | 5.70×10‒12 | 9.25×10‒12 | 5.44×10‒11 | 2.75×10‒12 | 2.24×10‒12 | 7.44×10‒11 | |||||||
Environmental impact value | 2.85×10‒13 | 4.63×10‒13 | 2.72×10‒12 | 1.38×10‒13 | 1.12×10‒13 | 3.72×10‒12 | ||||||||
Percent (%) | 7.67 | 12.44 | 73.18 | 3.70 | 3.01 | 100.00 | ||||||||
HTP | Normalization result | 3.11×10‒12 | 4.81×10‒11 | 3.02×10‒11 | 8.06×10‒12 | 5.31×10‒12 | 9.48×10‒11 | |||||||
Environmental impact value | 6.23×10‒13 | 9.62×10‒12 | 6.04×10‒12 | 1.61×10‒12 | 1.06×10‒12 | 1.90×10‒11 | ||||||||
Percent (%) | 3.29 | 50.75 | 31.86 | 8.50 | 5.60 | 100.00 | ||||||||
TETP | Normalization result | 1.25×10‒10 | 0 | 0 | 0 | 0 | 1.25×10‒10 | |||||||
Environmental impact value | 1.37×10‒11 | 0 | 0 | 0 | 0 | 1.37×10‒11 | ||||||||
Percent (%) | 100.00 | 0 | 0 | 0 | 0 | 100.00 |
Table 7 The detailed environmental impacts of each stage
Impact category | Raw material acquisition | Transportation of raw material | Product production | Product use | Final disposal | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADP | Normalization result | 1.70×10‒11 | 6.21×10‒12 | 2.68×10‒10 | 4.12×10‒13 | 2.71×10‒13 | 2.92×10‒10 | |||||||
Environmental impact value | 1.95×10‒12 | 7.14×10‒13 | 3.09×10‒11 | 4.74×10‒14 | 3.12×10‒14 | 3.36×10‒11 | ||||||||
Percent (%) | 5.81 | 2.13 | 91.82 | 0.14 | 0.09 | 100.00 | ||||||||
GWP | Normalization result | 9.92×10‒11 | 3.39×10‒12 | 7.38×10‒11 | 2.24×10‒13 | 1.54×10‒11 | 1.92×10‒10 | |||||||
Environmental impact value | 2.28×10‒11 | 7.79×10‒13 | 1.70×10‒11 | 5.16×10‒14 | 3.53×10‒12 | 4.42×10‒11 | ||||||||
Percent (%) | 51.67 | 1.76 | 38.45 | 0.12 | 8.00 | 100.00 | ||||||||
AP | Normalization result | 7.50×10‒11 | 9.86×10‒12 | 2.75×10‒10 | 2.08×10‒13 | 1.37×10‒13 | 3.60×10‒10 | |||||||
Environmental impact value | 3.00×10‒12 | 3.94×10‒13 | 1.10×10‒11 | 8.34×10‒15 | 5.49×10‒15 | 1.44×10‒11 | ||||||||
Percent (%) | 20.84 | 2.74 | 76.33 | 0.06 | 0.04 | 100.00 | ||||||||
EP | Normalization result | 6.59×10‒11 | 2.59×10‒12 | 2.81×10‒11 | 5.35×10‒14 | 3.52×10‒14 | 9.67×10‒11 | |||||||
Environmental impact value | 4.61×10‒12 | 1.82×10‒13 | 1.97×10‒12 | 3.74×10‒15 | 2.46×10‒15 | 6.77×10‒12 | ||||||||
Percent (%) | 68.15 | 2.68 | 29.07 | 0.06 | 0.04 | 100.00 | ||||||||
POCP | Normalization result | 5.70×10‒12 | 9.25×10‒12 | 5.44×10‒11 | 2.75×10‒12 | 2.24×10‒12 | 7.44×10‒11 | |||||||
Environmental impact value | 2.85×10‒13 | 4.63×10‒13 | 2.72×10‒12 | 1.38×10‒13 | 1.12×10‒13 | 3.72×10‒12 | ||||||||
Percent (%) | 7.67 | 12.44 | 73.18 | 3.70 | 3.01 | 100.00 | ||||||||
HTP | Normalization result | 3.11×10‒12 | 4.81×10‒11 | 3.02×10‒11 | 8.06×10‒12 | 5.31×10‒12 | 9.48×10‒11 | |||||||
Environmental impact value | 6.23×10‒13 | 9.62×10‒12 | 6.04×10‒12 | 1.61×10‒12 | 1.06×10‒12 | 1.90×10‒11 | ||||||||
Percent (%) | 3.29 | 50.75 | 31.86 | 8.50 | 5.60 | 100.00 | ||||||||
TETP | Normalization result | 1.25×10‒10 | 0 | 0 | 0 | 0 | 1.25×10‒10 | |||||||
Environmental impact value | 1.37×10‒11 | 0 | 0 | 0 | 0 | 1.37×10‒11 | ||||||||
Percent (%) | 100.00 | 0 | 0 | 0 | 0 | 100.00 |
Fig. 5 Results of the environmental impact values of different life cycle stages Note: ADP: abiotic depletion potential fossil fuels; GWP: global warming potential; AP: acidification potential; EP: eutrophication potential; POCP: photochemical ozone formation potential; HTP: human toxicity potential; TETP: terrestrial ecotoxicity potential.
Fig. 6 The proportions of different life cycle stages in the seven impact categories Note: ADP: abiotic depletion potential fossil fuels; GWP: global warming potential; AP: acidification potential; EP: eutrophication potential, POCP: photochemical ozone formation potential; HTP: human toxicity potential; TETP: terrestrial ecotoxicity potential.
Fig. 7 Environmental impact proportions of each impact category in the entire life cycle Note: ADP: abiotic depletion potential fossil fuels; GWP: global warming potential; AP: acidification potential; EP: eutrophication potential; POCP: photochemical ozone formation potential; HTP: human toxicity potential; TETP: terrestrial ecotoxicity potential.
Impact category | Substance | Raw material acquisition | Contribution (%) | Impact category | Substance | Raw material acquisition | Contribution (%) | ||
---|---|---|---|---|---|---|---|---|---|
Mass (kg) | Characterization | Mass (kg) | Characterization | ||||||
TETP | Cu | 1.61 | 22.50 | 16.52 | AP | SO2 | 2.24 | 2.24 | 12.50 |
Zn | 2.31 | 57.80 | 42.38 | NOX | 6.31 | 4.42 | 24.67 | ||
Cd | 0.33 | 55.50 | 40.68 | SOX | 4.12 | 3.29 | 18.39 | ||
Pb | 1.76×10‒2 | 0.58 | 0.43 | NH3 | 4.23 | 7.96 | 44.43 | ||
Total | 1.36×102 | 100.00 | Total | 17.90 | 100.00 | ||||
GWP | CO2* | -2.56×103 | -2.56×103 | -61.02 | EP | PO43‒ | 0.35 | 0.35 | 3.34 |
CO | 0.91 | 1.83 | 0.04 | N2O | 21.70 | 5.86 | 56.22 | ||
CH4 | 0.59 | 12.30 | 0.29 | NOX | 6.31 | 0.82 | 7.87 | ||
N2O** | 21.70 | 6.73×103 | 160.68 | NO3‒ | 4.76 | 2.00 | 19.18 | ||
Total | 4.19×103 | 100.00 | NH3 | 4.23 | 1.40 | 13.39 | |||
Total | 10.40 | 100.00 |
Table 8 The contributions of different substances to different environmental impacts in the stage of raw material acquisition
Impact category | Substance | Raw material acquisition | Contribution (%) | Impact category | Substance | Raw material acquisition | Contribution (%) | ||
---|---|---|---|---|---|---|---|---|---|
Mass (kg) | Characterization | Mass (kg) | Characterization | ||||||
TETP | Cu | 1.61 | 22.50 | 16.52 | AP | SO2 | 2.24 | 2.24 | 12.50 |
Zn | 2.31 | 57.80 | 42.38 | NOX | 6.31 | 4.42 | 24.67 | ||
Cd | 0.33 | 55.50 | 40.68 | SOX | 4.12 | 3.29 | 18.39 | ||
Pb | 1.76×10‒2 | 0.58 | 0.43 | NH3 | 4.23 | 7.96 | 44.43 | ||
Total | 1.36×102 | 100.00 | Total | 17.90 | 100.00 | ||||
GWP | CO2* | -2.56×103 | -2.56×103 | -61.02 | EP | PO43‒ | 0.35 | 0.35 | 3.34 |
CO | 0.91 | 1.83 | 0.04 | N2O | 21.70 | 5.86 | 56.22 | ||
CH4 | 0.59 | 12.30 | 0.29 | NOX | 6.31 | 0.82 | 7.87 | ||
N2O** | 21.70 | 6.73×103 | 160.68 | NO3‒ | 4.76 | 2.00 | 19.18 | ||
Total | 4.19×103 | 100.00 | NH3 | 4.23 | 1.40 | 13.39 | |||
Total | 10.40 | 100.00 |
Impact category | Substance | Transportation of raw material | Contribution (%) | Impact category | Substance | Transportation of raw material | Contribution (%) | ||
---|---|---|---|---|---|---|---|---|---|
Mass (kg) | Characterization | Mass (kg) | Characterization | ||||||
POCP | CO | 0.74 | 2.00×10‒2 | 5.86 | HTP | SO2 | 0.15 | 1.44×10‒2 | 0.01 |
CH4 | 1.43×10‒2 | 1.00×10‒4 | 0.03 | NOX | 3.15 | 3.78 | 3.05 | ||
NOX | 3.15 | 8.82×10‒2 | 25.88 | Dust | 1.47×102 | 1.20×102 | 96.94 | ||
NMVOC | 0.56 | 0.23 | 68.23 | Total | 1.24×102 | 100.00 | |||
Total | 0.34 | 100.00 |
Table 9 The contributions of different substances to different environmental impacts in the transportation of raw material stage
Impact category | Substance | Transportation of raw material | Contribution (%) | Impact category | Substance | Transportation of raw material | Contribution (%) | ||
---|---|---|---|---|---|---|---|---|---|
Mass (kg) | Characterization | Mass (kg) | Characterization | ||||||
POCP | CO | 0.74 | 2.00×10‒2 | 5.86 | HTP | SO2 | 0.15 | 1.44×10‒2 | 0.01 |
CH4 | 1.43×10‒2 | 1.00×10‒4 | 0.03 | NOX | 3.15 | 3.78 | 3.05 | ||
NOX | 3.15 | 8.82×10‒2 | 25.88 | Dust | 1.47×102 | 1.20×102 | 96.94 | ||
NMVOC | 0.56 | 0.23 | 68.23 | Total | 1.24×102 | 100.00 | |||
Total | 0.34 | 100.00 |
Impact category | Substance | Product production | Contribution (%) | Impact category | Substance | Product production | Contribution (%) | ||
---|---|---|---|---|---|---|---|---|---|
Mass (kg) | Characterization | Mass (kg) | Characterization | ||||||
ADP | Coal | 2.88×103 | 8.03×104 | 78.78 | EP | PO43‒ | 0.00 | 0.00 | 0.00 |
Crude oil | 4.84×102 | 2.03×104 | 19.88 | N2O | 0.00 | 0.00 | 0.00 | ||
Natural gas | 35.30 | 1.37×103 | 1.34 | NOX | 34.20 | 4.45 | 100.00 | ||
Total | 1.02×105 | 100.00 | NO3‒ | 0.00 | 0.00 | 0.00 | |||
GWP | CO2 | 2.84×103 | 2.84×103 | 91.17 | NH3 | 0.00 | 0.00 | 0.00 | |
CO | 12.80 | 25.50 | 0.82 | Total | 4.45 | 100.00 | |||
CH4 | 11.90 | 2.50×102 | 8.01 | POCP | CO | 12.80 | 0.35 | 17.19 | |
N2O | 0.00 | 0.00 | 0.00 | CH4 | 11.90 | 8.33×10‒2 | 4.15 | ||
Total | 3.12×103 | 100.00 | NOX | 34.20 | 0.96 | 47.81 | |||
AP | SO2 | 41.60 | 41.60 | 63.47 | NMVOC | 1.49 | 0.62 | 30.85 | |
NOX | 34.20 | 24.00 | 36.53 | Total | 2.00 | 100.00 | |||
SOX | 0.00 | 0.00 | 0.00 | HTP | SO2 | 41.60 | 4.00 | 5.13 | |
NH3 | 0.00 | 0.00 | 0.00 | NOX | 34.20 | 41.10 | 52.73 | ||
Total | 65.60 | 100.00 | Dust | 40.00 | 32.80 | 42.13 | |||
Total | 77.90 | 100.00 |
Table 10 The contributions of different substances to different environmental impacts in the stage of product production
Impact category | Substance | Product production | Contribution (%) | Impact category | Substance | Product production | Contribution (%) | ||
---|---|---|---|---|---|---|---|---|---|
Mass (kg) | Characterization | Mass (kg) | Characterization | ||||||
ADP | Coal | 2.88×103 | 8.03×104 | 78.78 | EP | PO43‒ | 0.00 | 0.00 | 0.00 |
Crude oil | 4.84×102 | 2.03×104 | 19.88 | N2O | 0.00 | 0.00 | 0.00 | ||
Natural gas | 35.30 | 1.37×103 | 1.34 | NOX | 34.20 | 4.45 | 100.00 | ||
Total | 1.02×105 | 100.00 | NO3‒ | 0.00 | 0.00 | 0.00 | |||
GWP | CO2 | 2.84×103 | 2.84×103 | 91.17 | NH3 | 0.00 | 0.00 | 0.00 | |
CO | 12.80 | 25.50 | 0.82 | Total | 4.45 | 100.00 | |||
CH4 | 11.90 | 2.50×102 | 8.01 | POCP | CO | 12.80 | 0.35 | 17.19 | |
N2O | 0.00 | 0.00 | 0.00 | CH4 | 11.90 | 8.33×10‒2 | 4.15 | ||
Total | 3.12×103 | 100.00 | NOX | 34.20 | 0.96 | 47.81 | |||
AP | SO2 | 41.60 | 41.60 | 63.47 | NMVOC | 1.49 | 0.62 | 30.85 | |
NOX | 34.20 | 24.00 | 36.53 | Total | 2.00 | 100.00 | |||
SOX | 0.00 | 0.00 | 0.00 | HTP | SO2 | 41.60 | 4.00 | 5.13 | |
NH3 | 0.00 | 0.00 | 0.00 | NOX | 34.20 | 41.10 | 52.73 | ||
Total | 65.60 | 100.00 | Dust | 40.00 | 32.80 | 42.13 | |||
Total | 77.90 | 100.00 |
Term | Unit | PLA packaging plastic | PE plastic bag | PLA/PE |
---|---|---|---|---|
CO2 emissions | kg | 1.03×103 | 4.10×103 | 0.25 |
NOx emissions | kg | 43.80 | 1.90 | 23.1 |
SOx emissions | kg | 4.12 | 5.55 | 0.74 |
CxHy emissions | kg | 14.80 | 21.00 | 0.71 |
Total energy | MJ | 66.52×103 | 6.08×103 | 10.90 |
Table 11 Comparison of life cycle evaluation results between PLA and PE food packaging products
Term | Unit | PLA packaging plastic | PE plastic bag | PLA/PE |
---|---|---|---|---|
CO2 emissions | kg | 1.03×103 | 4.10×103 | 0.25 |
NOx emissions | kg | 43.80 | 1.90 | 23.1 |
SOx emissions | kg | 4.12 | 5.55 | 0.74 |
CxHy emissions | kg | 14.80 | 21.00 | 0.71 |
Total energy | MJ | 66.52×103 | 6.08×103 | 10.90 |
[1] |
Akiyama M, Tsuge T, Doi Y. 2003. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polymer Degradation and Stability, 80(1): 183-194.
DOI URL |
[2] |
Bertoluci G, Leroy Y, Olsson A. 2014. Exploring the environmental impacts of olive packaging solutions for the European food market. Journal of Cleaner Production, 64: 234-243.
DOI URL |
[3] | Chen S M, Liu Z Q. 2000. The Life Cycle Assessment study of plastic and paper packaging materials. Journal of Nanchang Institute of Aeronautical Technology, (3): 82-84. (in Chinese) |
[4] | China Plastics Processing Industry Association. 2018. China plastics processing industry (2017). China Plastics, 32(4): 1-5. (in Chinese) |
[5] | Duan N, Cheng S G. 2008. Outline and contrast analysis of life cycle assessment methodologies. Journal of Anhui Agricultural Sciences, 36(32): 13923-13925. (in Chinese) |
[6] | EPRO (European Association of Plastics Recycling and Recovery Organisations). 2018. Plastic Europe 2018: Plastics-The facts. Brussels, Belgium: Association of Plastic Manufacturers. |
[7] | EPRO (European Association of Plastics Recycling and Recovery Organisations). 2019. Plastic Europe 2019: Plastics-The facts. Brussels, Belgium: Association of Plastic Manufacturers. |
[8] |
Guinee J B. 2002. Handbook on life cycle assessment operational guide to the ISO standards. The International Journal of Life Cycle Assessment, 7(5): 311-313.
DOI URL |
[9] |
Haes H. 1999. Weighting in life cycle assessment: Is there a coherent perspective? Journal of Industrial Ecology, 3(2): 3-7.
DOI URL |
[10] | He H J, Wang X J, Kou S R. 2017. Effects of different planting densities on photosynthetic characteristics and yield of maize in arid areas of northwest China. Crop Journal, (6): 91-95. (in Chinese) |
[11] |
Hermann B G, Blok K, Patel M K. 2010. Twisting biomaterials around your little finger: Environmental impacts of bio-based wrappings. The International Journal of Life Cycle Assessment, 15(4): 346-358.
DOI URL |
[12] | Huppes G, Van Oers L. 2011. Evaluation of weighting methods for measuring the EU-27 overall environmental impact. Luxembourg, Grand Duchy of Luxembourg: Publications Office of the European Union. |
[13] |
Ingrao C, Gigli M, Siracusa V. 2017. An attributional life cycle assessment application experience to highlight environmental hotspots in the production of foamy polylactic acid trays for fresh-food packaging usage. Journal of Cleaner Production, 150: 93-103.
DOI URL |
[14] |
Ingrao C, Tricase C, Cholewa-Wójcik A, et al. 2015. Polylactic acid trays for fresh-food packaging: A carbon footprint assessment. Science of the Total Environment, 537: 385-398.
DOI URL |
[15] | International Organization for Standardization. 2006. Environmental management-Life cycle assessment-Principles and framework (ISO 14040:2006). Berlin, Germany: Deutsches Institut für Normung. |
[16] | Jiang Z H. 2010. Application and market prospect of polylactic acid. Shanghai Chemical Industry, 35(2): 37-38. (in Chinese) |
[17] | Li M Y, Zhang Y, Zhu L, et al. 2017. Feasibility study on PLA in express packaging application. Green Packaging, (11): 37-41. (in Chinese) |
[18] | Li X R. 2020. Jindan technology: Overlapping “packaging” of polylactic acid by customers and rival. Stock Market Dynamics Analysis, (3): 46-47. (in Chinese) |
[19] | Li Z Y, Wang X, Wei J, et al. 2010. Life cycle assessment of fertilization in corn production in different regions of China. Acta Scientiae Circumstantiae, 30(9): 1912-1920. (in Chinese) |
[20] | Lu H X. 2016. Development and trends of biodegradable polymers. Chemical Industry, 34(3): 7-14. (in Chinese) |
[21] | Ma L P, Wang Z H, Gong X Z,et al. 2006. Life cycle inventory analysis of two types of freight transport on city roads. Beijing, China: Chinese Materials Research Society. (in Chinese) |
[22] |
Mahalle L, Alemdar A, Mihai M, et al. 2014. A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites. The International Journal of Life Cycle Assessment, 19(6): 1305-1315.
DOI URL |
[23] | Martien V D O, Karin M, Maarten V D Z, et al. 2017. Bio-based and biodegradable plastics: Facts and figures. Wageningen, Netherlands: Wageningen Food & Biobased Research. |
[24] | Meng X C. 2010. Life cycle assessment of polycarbonate and polylactic acid. Diss., Beijing, China, Beijing University of Technology. (in Chinese) |
[25] |
Navajas A, Bernarte A, Arzamendi G, et al. 2014. Ecodesign of PVC packing tape using life cycle assessment. The International Journal of Life Cycle Assessment, 19(1): 218-230.
DOI URL |
[26] |
Rossi V, Cleeve-Edwards N, Lundquist L, et al. 2015. Life cycle assessment of end-of-life options for two biodegradable packaging materials: Sound application of the European waste hierarchy. Journal of Cleaner Production, 86: 132-145.
DOI URL |
[27] | Shen F Q. 2013. Polylactic acid market overview and technical development. Polyester Industry, 26(4): 8-10. (in Chinese) |
[28] |
Sonnemann G, Valdivia S. 2017. Medellin declaration on marine litter in life cycle assessment and management. The International Journal of Life Cycle Assessment, 22(10): 1637-1639.
DOI URL |
[29] | Wang Y, Jiang H B, Chen D M, et al. 2017. Technology and market analysis on PLA. Biotechnology & Business, (6): 17-22. (in Chinese) |
[30] | Xu H Y. 2018. Development report on treatment industry of urban domestic refuse in 2017. China Environmental Protection Industry, (7): 5-9. (in Chinese) |
[31] | Yang J X, Nielsen P H. 2001. Chinese life cycle impact assessments factors. Journal of Environmental Sciences, 13(2): 205-209. |
[32] |
Zhang J F, Li X, He Y F, et al. 2018. Physiological mechanism on drought tolerance enhanced by exogenous glucose in C4-pepc rice. Acta Agronomica Sinica, 44(1): 82-94. (in Chinese)
DOI URL |
[33] | Zheng X, Li X G, Wu Y Q. 2014. Natural degradation properties of polylactic acid. Journal of Functional Materials, (14): 14099-14102. (in Chinese) |
[34] | Zhou X. 2014. New plastic material-polylactic acid application analysis. Chemical Enterprise Management, (23): 167. (in Chinese) |
[1] | ZHANG Wang. Analysis of CO2 Emissions and the Mechanism of the Industrial Enterprises above Designated Size (IEDS) in Resource-based Cities by Application of Geographical Detector Technology [J]. Journal of Resources and Ecology, 2019, 10(5): 537-545. |
[2] | WU Pu, TIAN Mi. On Estimating Transportation Energy Consumption and Carbon Dioxide Emissions from Off-shore Island Tourism—A Case Study of Haikou City, China [J]. Journal of Resources and Ecology, 2016, 7(6): 472-479. |
[3] | WANG Shuxin, WANG Genxu, FANG Yiping. Factors Influencing the Energy Efficiency of Tourism Transport in China [J]. Journal of Resources and Ecology, 2016, 7(4): 246-253. |
[4] | HUANG Qi, KANG Jiancheng, HUANG Chenhao. Construction of the Comprehensive Energy Consumption Assessment Model for Star-rated Hotels and the Difference Analysis [J]. Journal of Resources and Ecology, 2015, 6(3): 164-171. |
[5] | LIU Yi, TENG Fei, SONG Jinping, Catherine BAUMONT. Decomposition Analysis of Changes in Metropolitan Energy Consumption in China Based on the Logarithmic Mean Divisia Index [J]. Journal of Resources and Ecology, 2014, 5(3): 228-236. |
[6] | ZHANG Wang, SHEN Yuming, ZHOU Yueyun. Increased CO2 Emissions from Energy Consumption Based on Three-Level Nested I-O Structural Decomposition Analysis for Beijing [J]. Journal of Resources and Ecology, 2014, 5(2): 115-122. |
[7] | JIAO Wenxian, ZHAI Manman, CHEN Xingpeng, JIA Zhuo. Changes in the Energy Consumption Carbon Footprint for Gansu Province [J]. Journal of Resources and Ecology, 2014, 5(2): 157-162. |
[8] | LI Yanmei, ZHAO Jianfeng, YANG Tao, CHEN Bao. Structural Decomposition Analysis of the Decline in China’s CO2 Emission Intensity 2005-2010 [J]. Journal of Resources and Ecology, 2013, 4(4): 311-316. |
[9] | YANG Hailong, LV Yao, FENG Zhiming. Carbon Balance of Cassava-based Ethanol Fuel in China [J]. Journal of Resources and Ecology, 2012, 3(1): 55-63. |
[10] | CHENG Shengkui, XU Zengrang, SU Yun, LIU Xiaojie, SHEN Lei, XIE Gaodi, ZHEN Lin, LI Xiaojuan, LONG Xin. Resources Flow and Its Environmental Impacts [J]. Journal of Resources and Ecology, 2010, 1(1): 15-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||