Journal of Resources and Ecology ›› 2020, Vol. 11 ›› Issue (5): 516-524.DOI: 10.5814/j.issn.1674-764x.2020.05.009
• Human Activities and Ecosystem • Previous Articles Next Articles
SUN Wei, LI Shaowei, ZHANG Yangjian, FU Gang*()
Received:
2020-03-27
Accepted:
2020-06-02
Online:
2020-09-30
Published:
2020-09-30
Contact:
FU Gang
Supported by:
SUN Wei, LI Shaowei, ZHANG Yangjian, FU Gang. Effect of Long-term Experimental Warming on the Nutritional Quality of Alpine Meadows in the Northern Tibet[J]. Journal of Resources and Ecology, 2020, 11(5): 516-524.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2020.05.009
Year | AT (℃) | AP (mm) | GST (℃) | GSP (mm) |
---|---|---|---|---|
1963-2019 | 1.96±0.80 | 476.36±96.69 | 10.02±0.62 | 400.45±86.83 |
2018 | 2.67 | 667.00 | 10.82 | 589.10 |
2019 | 3.08 | 426.20 | 11.14 | 372.40 |
Table 1 Annual mean temperature (AT) and precipitation (AP), and growing season (June-September) temperature (GST) and precipitation (GSP) in 1963-2019, 2018 and 2019 in the Damxung County, Lhasa City, Tibet, China
Year | AT (℃) | AP (mm) | GST (℃) | GSP (mm) |
---|---|---|---|---|
1963-2019 | 1.96±0.80 | 476.36±96.69 | 10.02±0.62 | 400.45±86.83 |
2018 | 2.67 | 667.00 | 10.82 | 589.10 |
2019 | 3.08 | 426.20 | 11.14 | 372.40 |
Site Model | Ts | SM | Ta | VPD | |||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
A | W | 25.01 | 0.007 | 1.22 | 0.331 | 0.95 | 0.385 | 0.14 | 0.731 |
Y | 12.11 | 0.025 | 1.60 | 0.275 | 0.09 | 0.774 | 5.29 | 0.083 | |
W×Y | 0.02 | 0.891 | 0.11 | 0.753 | 0.02 | 0.897 | 0.79 | 0.425 | |
B | W | 215.52 | <0.001 | 3.41 | 0.139 | 4.33 | 0.106 | 17.07 | 0.014 |
Y | 5.00 | 0.089 | 6.62 | 0.062 | 0.42 | 0.554 | 81.01 | 0.001 | |
W×Y | 1.93 | 0.237 | 0.00 | 0.952 | 0.02 | 0.883 | 2.90 | 0.164 | |
C | W | 43.26 | 0.003 | 1.78 | 0.253 | 10.09 | 0.034 | 149.08 | <0.001 |
Y | 0.19 | 0.683 | 14.93 | 0.018 | 0.15 | 0.718 | 379.35 | <0.001 | |
W×Y | 5.49 | 0.079 | 1.21 | 0.334 | 1.10 | 0.355 | 25.49 | 0.007 |
Table 2 Repeated analysis of variance for the main and interactive effects of experimental warming (W) and measurement year on soil temperature (Ts), soil moisture (SM), air temperature (Ta) and vapor pressure deficit (VPD)
Site Model | Ts | SM | Ta | VPD | |||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
A | W | 25.01 | 0.007 | 1.22 | 0.331 | 0.95 | 0.385 | 0.14 | 0.731 |
Y | 12.11 | 0.025 | 1.60 | 0.275 | 0.09 | 0.774 | 5.29 | 0.083 | |
W×Y | 0.02 | 0.891 | 0.11 | 0.753 | 0.02 | 0.897 | 0.79 | 0.425 | |
B | W | 215.52 | <0.001 | 3.41 | 0.139 | 4.33 | 0.106 | 17.07 | 0.014 |
Y | 5.00 | 0.089 | 6.62 | 0.062 | 0.42 | 0.554 | 81.01 | 0.001 | |
W×Y | 1.93 | 0.237 | 0.00 | 0.952 | 0.02 | 0.883 | 2.90 | 0.164 | |
C | W | 43.26 | 0.003 | 1.78 | 0.253 | 10.09 | 0.034 | 149.08 | <0.001 |
Y | 0.19 | 0.683 | 14.93 | 0.018 | 0.15 | 0.718 | 379.35 | <0.001 | |
W×Y | 5.49 | 0.079 | 1.21 | 0.334 | 1.10 | 0.355 | 25.49 | 0.007 |
Fig. 1 Comparisons of (a) soil temperature (Ts), (b) soil moisture (SM), (c) air temperature (Ta) and (d) vapor pressure deficit (VPD) between non-warming and warming treatments at sites A, B and C in 2018 and 2019 Note: * indicates P<0.05.
Site Model | CP | ADF | NDF | Ash | EE | WSC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | ||
A | W | 2.40 | 0.197 | 6.71 | 0.061 | 0.15 | 0.716 | 0.25 | 0.645 | 0.01 | 0.919 | 0.11 | 0.761 |
Y | 32.37 | 0.005 | 5.86 | 0.073 | 8.59 | 0.043 | 3.86 | 0.121 | 2.75 | 0.172 | 1.36 | 0.308 | |
W×Y | 0.85 | 0.410 | 2.29 | 0.205 | 0.05 | 0.841 | 0.03 | 0.870 | 2.12 | 0.220 | 0.21 | 0.670 | |
B | W | 79.22 | 0.001 | 4.99 | 0.089 | 23.00 | 0.009 | 24.52 | 0.008 | 5.73 | 0.075 | 0.85 | 0.409 |
Y | 24.56 | 0.008 | 1.61 | 0.273 | 15.18 | 0.018 | 0.65 | 0.467 | 0.44 | 0.545 | 10.49 | 0.032 | |
W×Y | 0.00 | 0.975 | 0.08 | 0.793 | 2.38 | 0.198 | 2.78 | 0.171 | 1.07 | 0.360 | 9.33 | 0.038 | |
C | W | 0.21 | 0.668 | 3.98 | 0.117 | 0.77 | 0.429 | 1.14 | 0.346 | 0.06 | 0.813 | 0.79 | 0.423 |
Y | 77.38 | 0.001 | 17.92 | 0.013 | 41.27 | 0.003 | 1.00 | 0.373 | 0.53 | 0.506 | 1.38 | 0.306 | |
W×Y | 4.21 | 0.109 | 0.01 | 0.926 | 1.33 | 0.313 | 2.96 | 0.161 | 0.64 | 0.470 | 0.18 | 0.690 |
Table 3 Repeated analysis of variance for the main and interactive effects of experimental warming (W) and measurement year on the content of crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), crude ash (Ash), ether extract (EE) and water-soluble carbohydrate (WSC)
Site Model | CP | ADF | NDF | Ash | EE | WSC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | ||
A | W | 2.40 | 0.197 | 6.71 | 0.061 | 0.15 | 0.716 | 0.25 | 0.645 | 0.01 | 0.919 | 0.11 | 0.761 |
Y | 32.37 | 0.005 | 5.86 | 0.073 | 8.59 | 0.043 | 3.86 | 0.121 | 2.75 | 0.172 | 1.36 | 0.308 | |
W×Y | 0.85 | 0.410 | 2.29 | 0.205 | 0.05 | 0.841 | 0.03 | 0.870 | 2.12 | 0.220 | 0.21 | 0.670 | |
B | W | 79.22 | 0.001 | 4.99 | 0.089 | 23.00 | 0.009 | 24.52 | 0.008 | 5.73 | 0.075 | 0.85 | 0.409 |
Y | 24.56 | 0.008 | 1.61 | 0.273 | 15.18 | 0.018 | 0.65 | 0.467 | 0.44 | 0.545 | 10.49 | 0.032 | |
W×Y | 0.00 | 0.975 | 0.08 | 0.793 | 2.38 | 0.198 | 2.78 | 0.171 | 1.07 | 0.360 | 9.33 | 0.038 | |
C | W | 0.21 | 0.668 | 3.98 | 0.117 | 0.77 | 0.429 | 1.14 | 0.346 | 0.06 | 0.813 | 0.79 | 0.423 |
Y | 77.38 | 0.001 | 17.92 | 0.013 | 41.27 | 0.003 | 1.00 | 0.373 | 0.53 | 0.506 | 1.38 | 0.306 | |
W×Y | 4.21 | 0.109 | 0.01 | 0.926 | 1.33 | 0.313 | 2.96 | 0.161 | 0.64 | 0.470 | 0.18 | 0.690 |
Fig. 2 Comparisons of (a) crude protein (CP), (b) acid detergent fiber (ADF), (c) neutral detergent fiber (NDF), (d) crude ash (Ash), (e) ether extract (EE) and (f) water-soluble carbohydrate (WSC) between non-warming and warming treatments at sites A, B and C in 2018 and 2019 Note: * indicates P<0.05.
Fig. 3 Nonmetric multidimensional scaling (NMDS) analysis of the nutritional quality Note: Legend abbreviations: ANW18: site A of non-warming treatment in 2018; AW18: site A of warming treatment in 2018; BNW18: site B of non- warming treatment in 2018; BW18: site B of warming treatment in 2018; CNW18: site C of non-warming treatment in 2018; CW18: site C of warming treatment in 2018; ANW19: site A of non-warming treatment in 2019; AW19: site A of warming treatment in 2019; BNW19: site B of non-warming treatment in 2019; BW19: site B of warming treatment in 2019; CNW19: site C of non-warming treatment in 2019; CW19: site C of warming treatment in 2019.
Model | F | P |
---|---|---|
W | 4.59 | 0.028 |
Y | 21.71 | 0.001 |
S | 1.52 | 0.231 |
W×Y | 1.75 | 0.173 |
W×S | 0.76 | 0.542 |
Y×S | 1.51 | 0.214 |
W×Y×S | 1.29 | 0.287 |
Table 4 The permutational multivariate analysis of variance of experimental warming (W), measurement year (Y) and measurement site (S) on nutritional quality
Model | F | P |
---|---|---|
W | 4.59 | 0.028 |
Y | 21.71 | 0.001 |
S | 1.52 | 0.231 |
W×Y | 1.75 | 0.173 |
W×S | 0.76 | 0.542 |
Y×S | 1.51 | 0.214 |
W×Y×S | 1.29 | 0.287 |
Fig. 4 Univariate regression analysis between the contents of (a) crude protein (CP) and soil moisture (SM), (b) CP and vapor pressure deficit (VPD), and (c) water-soluble carbohydrate (WSC) and SM
Fig. 5 Variation partitioning analysis (VPA), showing the shared and exclusive effects of soil moisture (SM), air temperature (Ta) and vapor pressure deficit (VPD) on (a) crude protein (CP), (b) acid detergent fiber (ADF), (c) neutral detergent fiber (NDF), (d) crude ash (Ash), and (e) the nutritional quality Note: The fractions of unexplained variation are not illustrated.
1 | Arft A M, Walker M D, Gurevitch J , et al. 1999. Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecological Monographs, 69(4):491-511. |
2 |
Augustine D J, Blumenthal D M, Springer T L , et al. 2018. Elevated CO2 induces substantial and persistent declines in forage quality irrespective of warming in mixedgrass prairie. Ecological Applications, 28(3):721-735.
URL PMID |
3 |
Austin A T, Yahdjian L, Stark J M , et al. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141(2):221-235.
DOI URL PMID |
4 |
Bai E, Li S L, Xu W H , et al. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199(2):441-451.
DOI URL PMID |
5 | Baranova A, Oldeland J, Wang S L , et al. 2019. Grazing impact on forage quality and macronutrient content of rangelands in Qilian Mountains, NW China. Journal of Mountain Science, 16(1):43-53. |
6 | Birnie-Gauvin K, Peiman K S, Raubenheimer D , et al. 2017. Nutritional physiology and ecology of wildlife in a changing world. Conservation Physiology, 5. DOI: 10.1093/conphys/cox030. |
7 | Cui G X, Yuan F, Degen A A , et al. 2016. Composition of the milk of yaks raised at different altitudes on the Qinghai-Tibetan Plateau. International Dairy Journal, 59:29-35. |
8 | Cui S J, Meng F D, Ji S N , et al. 2017. Responses of phenology and seed production of annual Koenigia islandica to warming in a desertified alpine meadow. Agricultural and Forest Meteorology, 247:376-384. |
9 |
Diffenbaugh N S, Field C B . 2013. Changes in ecologically critical terrestrial climate conditions. Science, 341(6145):486-492.
URL PMID |
10 |
Dorji T, Totland O, Moe S R , et al. 2013. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19(2):459-472.
DOI URL PMID |
11 | Dumont B, Andueza D, Niderkorn V , et al. 2015. A meta-analysis of climate change effects on forage quality in grasslands: Specificities of mountain and Mediterranean areas. Grass & Forage Science, 70(2):239-254. |
12 | Fan X, Yang D, Hao L , et al. 2017. Annual analysis of nutritional quality of pasture in Haiyan County, Qinghai Province. Pratacultural Science, 34(11):2359-2365. |
13 | Fu G, Shen Z X . 2016. Environmental humidity regulates effects of experimental warming on vegetation index and biomass production in an alpine meadow of the Northern Tibet. Plos One, 11(10). DOI: 10.1371/journal.pone.0165643. |
14 |
Fu G, Shen Z X . 2017. Clipping has stronger effects on plant production than does warming in three alpine meadow sites on the Northern Tibetan Plateau. Scientific Reports, 7. DOI: 10.1038/s41598-017-16645-2.
URL PMID |
15 | Fu G, Shen Z X, Zhang X Z . 2018. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agricultural and Forest Meteorology, 249:11-21. |
16 | Fu G, Zhang H R, Sun W . 2019. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the Northern Tibetan Plateau. Science of the Total Environment, 650:2666-2673. |
17 | Ganjurjav H, Gao Q Z, Gornish E S , et al. 2016. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 223:233-240. |
18 |
Gauly M, Bollwein H, Breves G , et al. 2013. Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe—A review. Animal, 7(5):843-859.
DOI URL PMID |
19 |
Habermann E, de Oliveira E A D, Contin D R , et al. 2019. Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. Physiologia Plantarum, 165(2):383-402.
URL PMID |
20 | Klein J A, Harte J, Zhao X Q . 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 7(12):1170-1179. |
21 | Klein J A, Harte J, Zhao X Q . 2008. Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau. Ecosystems, 11(5):775-789. |
22 |
Koidou M, Mountousis I, Dotas V , et al. 2019. Temporal variations of herbage production and nutritive value of three grasslands at different elevation zones regarding grazing needs and welfare of ruminants. Archives Animal Breeding, 62(1):215-226.
DOI URL PMID |
23 | Lenart E A, Bowyer R T, Hoef J V , et al. 2002. Climate change and caribou: Effects of summer weather on forage. Canadian Journal of Zoology, 80(4):664-678. |
24 |
Li C Y, Peng F, Xue X , et al. 2018. Productivity and quality of alpine grassland vary with soil water availability under experimental warming. Frontiers in Plant Science, 9:1790. DOI: 10.3389/fpls.2018.01790.
DOI URL PMID |
25 | Li J R, Liu Z H . 2017. High-cold meadow plants respond to long-term warming. Qinghai Prataculture, 26(3):13-17. (in Chinese) |
26 |
Lin D L, Xia J Y, Wan S Q . 2010. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytologist, 188(1):187-198.
DOI URL PMID |
27 | Lithourgidis A S, Vasilakoglou I B, Dhima K V , et al. 2006. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Research, 99(2-3):106-113. |
28 |
Lu M, Yang Y H, Luo Y Q , et al. 2011. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 189(4):1040-1050.
DOI URL PMID |
29 |
Lu X Y, Fan J H, Yan Y , et al. 2013. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet. Plos One, 8(3):e59054. DOI: 10.1371/journal.pone.0059054.
DOI URL PMID |
30 | Ma X X, Yan Y, Hong J T , et al. 2017. Impacts of warming on root biomass allocation in alpine steppe on the north Tibetan Plateau. Journal of Mountain Science, 14(8):1615-1623. |
31 | Miao F H, Guo Z G, Xue R , et al. 2015. Effects of grazing and precipitation on herbage biomass, herbage nutritive value, and yak performance in an alpine meadow on the Qinghai-Tibetan Plateau. Plos One, 10(6). DOI: 10.1371/journal.pone.0127275. |
32 | Piao S L, Fang J Y, He J S . 2006. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change, 74(1-3):253-267. |
33 |
Proffitt K M, Hebblewhite M, Peters W , et al. 2016. Linking landscape-scale differences in forage to ungulate nutritional ecology. Ecological Applications, 26(7):2156-2174.
URL PMID |
34 |
Ren H Y, Han G D, Lan Z C , et al. 2016a. Grazing effects on herbage nutritive values depend on precipitation and growing season in Inner Mongolian grassland. Journal of Plant Ecology, 9(6):712-723.
DOI URL |
35 |
Ren H Y, Han G D, Schonbach P , et al. 2016b. Forage nutritional characteristics and yield dynamics in a grazed semiarid steppe ecosystem of Inner Mongolia, China. Ecological Indicators, 60:460-469.
DOI URL |
36 |
Roukos C, Papanikolaou K, Karalazos A , et al. 2011. Changes in nutritional quality of herbage botanical components on a mountain side grassland in North-West Greece. Animal Feed Science and Technology, 169(1-2):24-34.
DOI URL |
37 |
Rustad L E, Campbell J L, Marion G M , et al. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126(4):543-562.
DOI URL PMID |
38 |
Samuil C, Stavarache M, Sirbu C , et al. 2018. Influence of sustainable fertilization on yield and quality food of Mountain Grassland. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2):410-417.
DOI URL |
39 |
Schönbach P, Wan H, Gierus M , et al. 2012. Effects of grazing and precipitation on herbage production, herbage nutritive value and performance of sheep in continental steppe. Grass and Forage Science, 67(4):535-545.
DOI URL |
40 |
Scocco P, Piermarteri K, Malfatti A , et al. 2016. Increase of drought stress negatively affects the sustainability of extensive sheep farming in sub-Mediterranean climate. Journal of Arid Environments, 128:50-58.
DOI URL |
41 |
Shi Y, Ma Y L, Ma W H , et al. 2013. Large scale patterns of forage yield and quality across Chinese grasslands. Chinese Science Bulletin, 58(10):1187-1199.
DOI URL |
42 |
Soussana J F, Luscher A . 2007. Temperate grasslands and global atmospheric change: A review. Grass and Forage Science, 62(2):127-134.
DOI URL |
43 | Sun J, Hou G, Liu M , et al. 2019. Effects of climatic and grazing changes on desertification of alpine grasslands, Northern Tibet. Ecological Indicators, 107. DOI: j.ecolind.2019.105647. |
44 |
Sun P, Cui Z, Liu S , et al. 2015. Seasonal evaluation of nutrition and carrying capacity of grazing pastures in the Three-River Source Region. Acta Prataculturae Sinica, 24(12):92-101. (in Chinese)
DOI URL |
45 |
Van Soest P J, Robertson J B, Lewis B A . 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10):3583-3597.
DOI URL PMID |
46 |
White L M . 1986. Forage yield and quality of warm-season and cool-season grasses. Journal of Range Management, 39(3):264-268.
DOI URL |
47 |
Wu H B, Wang X X, Ganjurjav H , et al. 2020. Effects of increased precipitation combined with nitrogen addition and increased temperature on methane fluxes in alpine meadows of the Tibetan Plateau. Science of the Total Environment, 705:135818. DOI: 10.1016/j.scitotenv.2019.135818.
DOI URL PMID |
48 | Xu S X, Zhao X Q, Sun P , et al. 2002. A simulative study on effects of climate warming on nutrient contents and in vitro digestibility of herbage grown in Qinghai-Xizang Plateau. Acta Botanica Sinica, 44(11):1357-1364. (in Chinese) |
49 |
Xu W, Zhu M Y, Zhang Z H , et al. 2018. Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau. Journal of Applied Ecology, 55(3):1486-1497.
DOI URL |
50 |
Xu Z Z, Zhou G S . 2006. Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. Journal of Plant Growth Regulation, 25(3):252-266.
DOI URL |
51 |
Yao X X, Wu J P, Gong X Y . 2019. Precipitation and seasonality affect grazing impacts on herbage nutritive values in alpine meadows on the Qinghai-Tibet Plateau. Journal of Plant Ecology, 12(6):993-1008.
DOI URL |
52 |
Yemm E W, Willis A J . 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3):508-514.
DOI URL PMID |
53 |
Yu C Q, Han F S, Fu G . 2019a. Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations. Science of the Total Environment, 655:814-822.
DOI URL PMID |
54 | Yu C Q, Shen Z X, Zhang X Z , et al. 2014. Response of soil C and N, dissolved organic C and N, and inorganic N to short-term experimental warming in an Alpine meadow on the Tibetan Plateau. Scientific World Journal, 2014: 152576. DOI: 10.1155/2014/152576. |
55 |
Yu C Q, Wang J W, Shen Z X , et al. 2019b. Effects of experimental warming and increased precipitation on soil respiration in an alpine meadow in the Northern Tibetan Plateau. Science of the Total Environment, 647:1490-1497.
DOI URL PMID |
56 | Zhang X, Luo L, Jin Y , et al. 2017. Changes in nutrients of dominant species on montane shrub grassland in the Lhasa River Basin. Chinese Journal of Grassland, 39(3):90-95. (in Chinese) |
57 |
Zhang X Z, Shen Z X, Fu G . 2015a. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87:32-38.
DOI URL |
58 | Zhang Y, Chen X J, Cheng Y X , et al. 2015b. Effects of stocking rates on functional group diversity and forage quality in rangeland of Qilian Mountain, China. Journal of Environmental Biology, 36(4):713-719. |
59 | Zhang Y, Dong S K, Gao Q Z , et al. 2019. “Rare biosphere” plays important roles in regulating soil available nitrogen and plant biomass in alpine grassland ecosystems under climate changes. Agriculture Ecosystems & Environment, 279:187-193. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||