Journal of Resources and Ecology ›› 2020, Vol. 11 ›› Issue (4): 378-387.DOI: 10.5814/j.issn.1674-764x.2020.04.006
• Resource Economics and Resource Evaluation • Previous Articles Next Articles
KEBBOUCHE Zahia1, TAIRI Abdelaziz1, SAFI Brahim2,*()
Received:
2019-02-27
Accepted:
2020-03-25
Online:
2020-07-30
Published:
2020-09-30
Contact:
SAFI Brahim
About author:
ZAHIA Kebbouche, E-mail: z.kebbouchecherifi@univ-boumerdes.dz
KEBBOUCHE Zahia, TAIRI Abdelaziz, SAFI Brahim. Comparative Life Cycle Assessment of Two Types of Truck Bumper Produced in the Algerian Auto Industry[J]. Journal of Resources and Ecology, 2020, 11(4): 378-387.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2020.04.006
Part number | Subset | Nature of sheet | Metal weight (kg) | Process | Operation range |
---|---|---|---|---|---|
668085 (A) | - | TC | 14.10 | 55190 8 kW 6 bar | Cut flan, punch, smash, Notching, control fold one edge R = B, fold R = 15, control |
55820 2 ch 6 bar | |||||
55170 11 kW 6 bar | |||||
56170, 56540, 56540 | |||||
668086 (B) 668087 (C) | - | XES | 0.866 | 55120, 56180, 56180 | Cut blank, Cut out blank, Coining, Controlled |
668088 (D) | 668089 (D′) | XES | 0.866 | 55120, 55820, 56180, 56180, 56540 | Cut blank, Punch, Notch (4 angles), Fold, Control, Bend ends, Control |
663302 (D″) | XES | 0.192 | 55190, 55820, 56180 | Cut blank, Punch, Fold 2 edges, Control |
Table 1 Steel bumper component
Part number | Subset | Nature of sheet | Metal weight (kg) | Process | Operation range |
---|---|---|---|---|---|
668085 (A) | - | TC | 14.10 | 55190 8 kW 6 bar | Cut flan, punch, smash, Notching, control fold one edge R = B, fold R = 15, control |
55820 2 ch 6 bar | |||||
55170 11 kW 6 bar | |||||
56170, 56540, 56540 | |||||
668086 (B) 668087 (C) | - | XES | 0.866 | 55120, 56180, 56180 | Cut blank, Cut out blank, Coining, Controlled |
668088 (D) | 668089 (D′) | XES | 0.866 | 55120, 55820, 56180, 56180, 56540 | Cut blank, Punch, Notch (4 angles), Fold, Control, Bend ends, Control |
663302 (D″) | XES | 0.192 | 55190, 55820, 56180 | Cut blank, Punch, Fold 2 edges, Control |
Products | Major chemical constituents | Quantity |
---|---|---|
Systoclean 2118/504 (dégraissage) | Sodium hydroxide NaOH (C>10 %) | 45 g |
Addistrip 2252 (décappage) | Hydrochloric acid HCL (C>25 %) | 0.5 L |
Neutrax n°1 | Sodium nitrate NaNO3 (C>20 %) | 20 g |
Systophose 4605 | Phosphoric acid (C>25 %) | 0.020 L |
Rinspas 19 | Hydrofluozirconic acid and acid Fluozirconic | 0.002 L |
Water | H2O | 60 L |
Table 2 Products used for surface treatments and painting (steel bumper)
Products | Major chemical constituents | Quantity |
---|---|---|
Systoclean 2118/504 (dégraissage) | Sodium hydroxide NaOH (C>10 %) | 45 g |
Addistrip 2252 (décappage) | Hydrochloric acid HCL (C>25 %) | 0.5 L |
Neutrax n°1 | Sodium nitrate NaNO3 (C>20 %) | 20 g |
Systophose 4605 | Phosphoric acid (C>25 %) | 0.020 L |
Rinspas 19 | Hydrofluozirconic acid and acid Fluozirconic | 0.002 L |
Water | H2O | 60 L |
Products | Major chemical constituents | Quantity |
---|---|---|
Fiberglass layer | Fiberglass | 1200 g m-2 |
Resin | Polyester | 2800 g |
BUTANOX M-50 | Methyl Ethyl Ketone Peroxide PMC | 56 g |
Oc6 | Cobalt octoate | 56 g |
Gel coat | Paint resin | 448 g |
Acetone | Diluent | Small quantity |
Wax | Release fat | 20 g |
Table 3 Materials used for the polyester bumper
Products | Major chemical constituents | Quantity |
---|---|---|
Fiberglass layer | Fiberglass | 1200 g m-2 |
Resin | Polyester | 2800 g |
BUTANOX M-50 | Methyl Ethyl Ketone Peroxide PMC | 56 g |
Oc6 | Cobalt octoate | 56 g |
Gel coat | Paint resin | 448 g |
Acetone | Diluent | Small quantity |
Wax | Release fat | 20 g |
Chemical composition | Concentration (%) |
---|---|
MgO | 1.141 |
Al2O3 | 10.298 |
SiO2 | 44.161 |
SO3 | 0.764 |
K2O | 0.476 |
CaO | 35.048 |
Fe2O3 | 1.872 |
Table 4 Chemical composition in cutting and preparation of fiberglass
Chemical composition | Concentration (%) |
---|---|
MgO | 1.141 |
Al2O3 | 10.298 |
SiO2 | 44.161 |
SO3 | 0.764 |
K2O | 0.476 |
CaO | 35.048 |
Fe2O3 | 1.872 |
Chemical composition | Concentration (%) |
---|---|
MgO | 0.230 |
Al2O3 | 1.775 |
SiO2 | 7.314 |
P2O5 | 0.910 |
SO3 | 0.118 |
K2O | 0.118 |
CaO | 7.488 |
TiO2 | 0.630 |
Fe2O3 | 0.448 |
Cl | 13.770 |
Table 5 Chemical composition in deburring finished part
Chemical composition | Concentration (%) |
---|---|
MgO | 0.230 |
Al2O3 | 1.775 |
SiO2 | 7.314 |
P2O5 | 0.910 |
SO3 | 0.118 |
K2O | 0.118 |
CaO | 7.488 |
TiO2 | 0.630 |
Fe2O3 | 0.448 |
Cl | 13.770 |
Chemical composition | Concentration (%) |
---|---|
Cr2O3 | 0.010 |
MgO | 0.087 |
Al2O3 | 0.598 |
SiO2 | 2.656 |
P2O5 | 0.460 |
SO3 | 0.088 |
CaO | 4.498 |
TiO2 | 0.371 |
Fe2O3 | 0.698 |
PbO | 3.673 |
Cl | 8.981 |
Table 6 Chemical composition in finishing part
Chemical composition | Concentration (%) |
---|---|
Cr2O3 | 0.010 |
MgO | 0.087 |
Al2O3 | 0.598 |
SiO2 | 2.656 |
P2O5 | 0.460 |
SO3 | 0.088 |
CaO | 4.498 |
TiO2 | 0.371 |
Fe2O3 | 0.698 |
PbO | 3.673 |
Cl | 8.981 |
1 | Andure M W, S C Jirapure, L P Dhamande . 2012. Advance automobile material for light weight material future—A review. IJCA Proceedings on International Conference on Benchmarks in Engineering Science and Technology, ( 1):15-22. |
2 | Berzi L, Delogu M. Pierini M . 2016. Development of driving cycles for electric vehicles in the context of the city of Florence. Transportation Research Part D: Transport and Environment, 47:299-322. |
3 | Bhattacharyya S K . 2015. Smarter-lighter-greener: Research innovations for the automotive sector. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. DOI: 10.1098/rspa.2014.0938. |
4 | Boureghda M, Fegas R, Louhab K . 2012. Study of the environmental impacts of urban wastewater recycling (case of boumerdes-Algeria) by the life cycle assessment method. Asian Journal of Chemistry, 24(1):339-344. |
5 | Caffrey C, K Bolon, G Kolwich , et al. 2015. Cost-effectiveness of a lightweight design for 2020-2025: An assessment of a light-duty pickup truck. SAE Technical Paper. 1-3. DOI: 10.4271/-01-0559. |
6 | Cecchel S, Chindamo D, Collotta M . 2018. Lightweighting in light commercial vehicles: Cradle-to-grave life cycle assessment of a safety-relevant component. The International Journal of Life Cycle Assessment, 23:2043-2054. |
7 | Cherifi A, Kihal N, Gardoni M , et al. 2012. The life cycle analysis applied to determine environmental impacts in the pharmaceutical industry. PICMET’12 Conference, Vancouver, Canada. |
8 | Cischino E, Di Paolo F, Mangino E , et al. 2016. An advanced technological lightweighted solution for a body in white. Transportation Research Procedia, 14:1021-1030. |
9 | Delogu M, Del Pero F, Pierini M . 2016. Lightweight design solutions in the automotive field: Environmental modelling based on fuel reduction value applied to diesel turbocharged vehicles. Sustainability, 1-3. DOI: 10.3390/su8111167. |
10 | Dubem E . 2016. Composite materials literature review for car bumper. DOI: 10.13140/RG.2.1.1817.3683. |
11 | Duflou J R, De Moor J, Verpoest I , et al. 2009. Environmental impact analysis of composite use in car manufacturing. The International Academy for Production Engineering Annals, 58:9-12. |
12 |
Ferreira1 C, Esteves C, Silva P , et al. 2013. Comparative life-cycle assessment of two car armrests produced at Cie Plasfil. Energy for Sustainability, 1-6. https://www.uc.pt/en/efs/research/EESEVS/f/ID142_Ferreira.pdf.
URL PMID |
13 | Ghodrat M, Rhamdhani M A, Sharafi P , et al. 2017. A comparative life cycle assessment of recycling the platinum group metals from automobile catalytic converter: An Australian perspective. Metallurgical and Materials Transactions E, 4:2-4. DOI: 10.1007/s40553-017-0109. |
14 | Goede M, Stehlin M, Rafflenbeul L , et al. 2009. Super light car—lightweight construction thanks to a multi-material design and function integration. European Transport Research Review, 1:5. DOI: 10.1007/s12544-008-0001-2. |
15 | Goede M . 2006. Super light car: Sustainable production technologies of emission reduced light weight car concepts (SLC). Transport Research Arena Europe 2006, Göteborg, Sweden. |
16 | Goedkoop M, Spriensma R . 2000. The Ecoindicator’99: A damage oriented method for life cycle impact assessment: Methodology report. Product Ecology Consultants, Amersfoort: The Netherlands. |
17 | Huntzinger D N, Eatmon T D . 2009. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7):668-675. |
18 | International Organization for Standardization . 2006. Environmental Management—Life cycle assessment—Principles and framework. ISO: Geneva, Switzerland. |
19 |
Kelly J C 1, Sullivan1 J L, Burnham1 A , et al. 2015. Impacts of vehicle weight reduction via material substitution on life-cycle greenhouse gas emissions. Environmental Science & Technology, 49(20):12535-12542.
DOI URL PMID |
20 | Klockea F, Kampkera A, Döbbelera B , et al. 2014. Simplified life cycle assessment of a hybrid car body part. 21st CIRP Conference on Life Cycle Engineering, Elsevier, 484-489. |
21 | Konrad S K, Gediga J, Hesselbach M , et al. 1996. Eyerer: case studies and projects LCA in the automotive industry life cycle assessment as an engineering tool in the automotive industry. The International Journal of Life Cycle Assessment, 1:15-21. |
22 | Liu Y, Nie Z R, Sun B X , et al. 2010. Development of Chinese characterization factors for land use in life cycle impact assessment. Science China Technological Sciences, 53(6):1483-1488. |
23 | Muñoz I, Rieradevall J, Domènech X , et al. 2006. LCA case studies: Using LCA to assess eco-design in the automotive sector case study of a polyolefinic door panel. The International Journal of Life Cycle Assessment, 11(5):323-334. |
24 | Prabhakaran S, Chinnarasu K, Senthil Kumar M . 2012. Design and fabrication of composite bumper for light passenger vehicles. International Journal of Modern Engineering Research, 2(4):2552-2556. |
25 | Simboli A, Raggi A, Rosica P . 2015. Life cycle assessment of process eco- innovations in an SME automotive supply network. Sustainability, 7(10):13761-13776. |
26 | Song Q B, Wang Z S, Li J H , et al. 2013. Life cycle assessment of desktop PCs in Macau. The International Journal of Life Cycle Assessment, 18(3):553-566. |
27 | Sooa V K, Compston P, Doolan M . 2018. Is the Australian automotive recycling industry heading towards a global circular economy — A case study on vehicle doors. The International Academy for Production Engineering 69, Copenhagen, Denmark: 843-848. |
28 | Tan R B H, Khoo H . 2005. An LCA study of a primary aluminium supply chain. Journal of Cleaner Production, 13:607-618. |
29 | Vanalle R M, Lucato W C, Santos L B . 2011. Environmental requirements in the automotive supply chain—An evaluation of a first tier company in the Brazilian auto industry. Procedia Environmental Sciences, 10:337-343. |
30 | Witik R A, Payet J, Michaud V , et al. 2011. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Composites: Part A, 42(11):1694-1709. |
31 | Younsi F, Louhab K . 2017. Using life cycle assessment methodology to assess human health and ecosystem toxicity impacts associated with milk production in Algeria. Fresenius Environmental Bulletin, 26(4):2518-2523. |
32 | Yusoff S, Hansen S B . 2007. Feasibility study of performing a life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment, 12(1):50-58. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||