Journal of Resources and Ecology ›› 2020, Vol. 11 ›› Issue (4): 331-341.DOI: 10.5814/j.issn.1674-764x.2020.04.001
• Forest Ecosystem • Next Articles
USOLTSEV Vladimir Andreevich1,2, SHOBAIRI Seyed Omid Reza1,*(), TSEPORDEY Ivan Stepanovich2, AHRARI Amirhossein3, ZHANG Meng4, SHOAIB Ahmad Anees5, CHASOVSKIKH Viktor Petrovich1
Received:
2020-02-18
Accepted:
2020-05-15
Online:
2020-07-30
Published:
2020-09-30
Contact:
SHOBAIRI Seyed Omid Reza
About author:
USOLTSEV Vladimir Andreevich, E-mail: Supported by:
USOLTSEV Vladimir Andreevich, SHOBAIRI Seyed Omid Reza, TSEPORDEY Ivan Stepanovich, AHRARI Amirhossein, ZHANG Meng, SHOAIB Ahmad Anees, CHASOVSKIKH Viktor Petrovich. Are There Differences in the Response of Natural Stand and Plantation Biomass to Changes in Temperature and Precipitation? A Case for Two-needled Pines in Eurasia[J]. Journal of Resources and Ecology, 2020, 11(4): 331-341.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2020.04.001
Regions | Species of the subgenus Pinus L. | Ages (yr) | DBH (cm) | Heights (m) | Sample No. | ||
---|---|---|---|---|---|---|---|
Natural stand | |||||||
West Europe | P. sylvestris L. | 11-100 | 1.4-53.1 | 2.3-32.0 | 19 | ||
Scandinavia | P. sylvestris L. | 9-212 | 1.9-42.0 | 3.3-32.4 | 117 | ||
The Ukraine and Byelorussia | P. sylvestris L. | 24-186 | 1.5-54.6 | 1.6-36.6 | 205 | ||
European Russia | P. sylvestris L. | 10-207 | 0.9-54.0 | 2.2-30.2 | 514 | ||
Turgay deflection | P. sylvestris L. | 13-110 | 0.3-47.8 | 1.4-27.4 | 411 | ||
Central Siberia | P. sylvestris L. | 4-430 | 0.5-65.6 | 1.6-28.8 | 587 | ||
China | P. sylvestris L. | 100 | 18.0 | 19.0 | 1 | ||
P.massoniana Lamb. | 20 | 8.0-22.3 | 10.4-16.5 | 8 | |||
Japan | P. densiflora S. et Z. | 49-120 | 9.2-60.9 | 14.1-35.7 | 11 | ||
P. thunbergii Parl. | 22-33 | 9.0-24.3 | 9.5-16.6 | 7 | |||
Sub-total | 1880 | ||||||
Plantations | |||||||
West and Central Europe | P. sylvestris L. | 7-50 | 0.5-36.5 | 1.4-21.0 | 77 | ||
Scandinavia | P. sylvestris L. | 5-143 | 1.2-37.1 | 2.1-25.6 | 196 | ||
The Ukraine and Byelorussia | P. sylvestris L. | 8-90 | 2.1-42.9 | 2.2-34.7 | 1010 | ||
European Russia | P. sylvestris L. | 6-78 | 1.5-30.1 | 1.8-32.6 | 160 | ||
Turgay deflection | P. sylvestris L. | 9-50 | 0.4-21.7 | 1.4-16.2 | 215 | ||
Central Siberia | P. sylvestris L. | 10-73 | 2.0-36.0 | 2.4-21.6 | 170 | ||
Iraq | P. halepensis Mill. | 24 | 15.8 | 7.4 | 1 | ||
China | P. tabuliformis Carr. | 17-25 | 4.0-12.0 | 3.3-10.8 | 8 | ||
Japan | P. densiflora S. et Z. | 3-53 | 1.7-39.1 | 2.0-18.7 | 108 | ||
P. thunbergii Parl. | 5-34 | 4.6-11.4 | 4.7-7.6 | 12 | |||
Sub-total | 1967 |
Table 1 Distribution of the 3847 sample trees by species, countries, regions, and mensuration indices
Regions | Species of the subgenus Pinus L. | Ages (yr) | DBH (cm) | Heights (m) | Sample No. | ||
---|---|---|---|---|---|---|---|
Natural stand | |||||||
West Europe | P. sylvestris L. | 11-100 | 1.4-53.1 | 2.3-32.0 | 19 | ||
Scandinavia | P. sylvestris L. | 9-212 | 1.9-42.0 | 3.3-32.4 | 117 | ||
The Ukraine and Byelorussia | P. sylvestris L. | 24-186 | 1.5-54.6 | 1.6-36.6 | 205 | ||
European Russia | P. sylvestris L. | 10-207 | 0.9-54.0 | 2.2-30.2 | 514 | ||
Turgay deflection | P. sylvestris L. | 13-110 | 0.3-47.8 | 1.4-27.4 | 411 | ||
Central Siberia | P. sylvestris L. | 4-430 | 0.5-65.6 | 1.6-28.8 | 587 | ||
China | P. sylvestris L. | 100 | 18.0 | 19.0 | 1 | ||
P.massoniana Lamb. | 20 | 8.0-22.3 | 10.4-16.5 | 8 | |||
Japan | P. densiflora S. et Z. | 49-120 | 9.2-60.9 | 14.1-35.7 | 11 | ||
P. thunbergii Parl. | 22-33 | 9.0-24.3 | 9.5-16.6 | 7 | |||
Sub-total | 1880 | ||||||
Plantations | |||||||
West and Central Europe | P. sylvestris L. | 7-50 | 0.5-36.5 | 1.4-21.0 | 77 | ||
Scandinavia | P. sylvestris L. | 5-143 | 1.2-37.1 | 2.1-25.6 | 196 | ||
The Ukraine and Byelorussia | P. sylvestris L. | 8-90 | 2.1-42.9 | 2.2-34.7 | 1010 | ||
European Russia | P. sylvestris L. | 6-78 | 1.5-30.1 | 1.8-32.6 | 160 | ||
Turgay deflection | P. sylvestris L. | 9-50 | 0.4-21.7 | 1.4-16.2 | 215 | ||
Central Siberia | P. sylvestris L. | 10-73 | 2.0-36.0 | 2.4-21.6 | 170 | ||
Iraq | P. halepensis Mill. | 24 | 15.8 | 7.4 | 1 | ||
China | P. tabuliformis Carr. | 17-25 | 4.0-12.0 | 3.3-10.8 | 8 | ||
Japan | P. densiflora S. et Z. | 3-53 | 1.7-39.1 | 2.0-18.7 | 108 | ||
P. thunbergii Parl. | 5-34 | 4.6-11.4 | 4.7-7.6 | 12 | |||
Sub-total | 1967 |
Fig. 1 Distribution of sample plots, where 1880 and 1967 trees of natural (rings) and plantation (squares) origin correspondingly have been harvested, on the map of the mean January temperature (℃) . (World Weather Maps 2007. https://store.mapsofworld.com/image/cache/data/map2014/currents-and-temperature-jan-enlarge-900x700.jpg).
Fig. 2 Distribution of sample plots, where 1880 and 1967 trees of natural (rings) and plantation (squares) origin correspondingly have been harvested, on the map of the mean annual precipitation (mm). (World Weather Maps 2007. http://www.mapmost.com/world-precipitation-map/free-world-precipitation-map/).
Pi | Regression model calculated | adjR2 | SE |
---|---|---|---|
Ps | Ps = 2.014×10?3+A0.1525+D1.5284+H0.4322+D0.1398(lnH)+e-0.1448B+(T+40)0.0526B+(T+40)0.6901+PR0.4292+(T+40)-0.1046(lnPR) | 0.987 | 1.24 |
Pf | Pf = 7.842×10?5+A-0.4624+D2.4422+H-1.2824+D0.1571(lnH)+e1.3265B+(T+40)-0.3345B+(T+40)2.1870+PR1.4287+(T+40)-0.3918(lnPR) | 0.900 | 1.61 |
Pb | Pb = 6.524×10?6+A-0.1796+D2.8848+H-1.6954+D0.1995(lnH)+e0.1512B+(T+40)-0.0343B+(T+40)2.4966+PR1.5638+(T+40)-0.4007(lnPR) | 0.926 | 1.66 |
Pa | Pa = 2.218×10?4+A0.0407+D1.7700+H-0.1235+D0.1778(lnH)+e0.2536B+(T+40)-0.0629B+(T+40)1.6918+PR1.0370+(T+40)-0.2635(lnPR) | 0.986 | 1.24 |
Table 2 Characteristics of regression model (1) calculated
Pi | Regression model calculated | adjR2 | SE |
---|---|---|---|
Ps | Ps = 2.014×10?3+A0.1525+D1.5284+H0.4322+D0.1398(lnH)+e-0.1448B+(T+40)0.0526B+(T+40)0.6901+PR0.4292+(T+40)-0.1046(lnPR) | 0.987 | 1.24 |
Pf | Pf = 7.842×10?5+A-0.4624+D2.4422+H-1.2824+D0.1571(lnH)+e1.3265B+(T+40)-0.3345B+(T+40)2.1870+PR1.4287+(T+40)-0.3918(lnPR) | 0.900 | 1.61 |
Pb | Pb = 6.524×10?6+A-0.1796+D2.8848+H-1.6954+D0.1995(lnH)+e0.1512B+(T+40)-0.0343B+(T+40)2.4966+PR1.5638+(T+40)-0.4007(lnPR) | 0.926 | 1.66 |
Pa | Pa = 2.218×10?4+A0.0407+D1.7700+H-0.1235+D0.1778(lnH)+e0.2536B+(T+40)-0.0629B+(T+40)1.6918+PR1.0370+(T+40)-0.2635(lnPR) | 0.986 | 1.24 |
Fig. 3 Dependence of pine tree biomass in natural stands (a) and plantations (b) upon the mean January temperature (T) and mean annual precipitation (PR) Note: Ps, Pf, Pb and Pa are dry biomass in kg of stem, foliage, branches and aboveground, respectively.
Fig. 4 Changes of the theoretical R/S ratio of natural stands and plantations in relation to tree stem diameter under different mean January temperature (T).
Biomass component | Mean temperature in January (℃) | ||||||
---|---|---|---|---|---|---|---|
-20 | -16 | -12 | -8 | -4 | 0 | 4 | |
Stems | 1.3 | 2.2 | 3.0 | 3.7 | 4.3 | 4.8 | 5.3 |
Foliage | 27.7 | 23.1 | 19.1 | 15.4 | 12.0 | 8.8 | 5.9 |
Branches | 4.8 | 4.2 | 3.6 | 3.2 | 2.8 | 2.5 | 2.1 |
Aboveground | 6.3 | 5.2 | 4.3 | 3.5 | 2.8 | 2.1 | 1.5 |
Table 3 Changes in the excess percentage (%) of different components biomass of plantation trees above natural ones due to changes in January temperature
Biomass component | Mean temperature in January (℃) | ||||||
---|---|---|---|---|---|---|---|
-20 | -16 | -12 | -8 | -4 | 0 | 4 | |
Stems | 1.3 | 2.2 | 3.0 | 3.7 | 4.3 | 4.8 | 5.3 |
Foliage | 27.7 | 23.1 | 19.1 | 15.4 | 12.0 | 8.8 | 5.9 |
Branches | 4.8 | 4.2 | 3.6 | 3.2 | 2.8 | 2.5 | 2.1 |
Aboveground | 6.3 | 5.2 | 4.3 | 3.5 | 2.8 | 2.1 | 1.5 |
Fig. 5 Change of tree biomass of natural stands (a) and plantations (b) when temperature assumes to be increased by 1 ℃ due to the expected climate change at different territorial levels of temperature and precipitation Note: Symbols Δs, Δf, Δb and Δa on the ordinate axes mean the change (± %) of biomass of stems, foliage, branches and aboveground, respectively, with the temperature increase by 1 ℃ and at the constant precipitation.
Fig. 6 Change of tree biomass of natural stands and plantations when precipitation assumes to be increased by 100 mm due to the expected climate change at different territorial levels of temperature and precipitation Note: The symbols Δs, Δf, Δb and Δa along the ordinate axes represent the change (± %) of biomass of stems, foliage, branches and aboveground, respectively, with precipitation increase by 100 mm and at the constant mean temperatures of January.
Fig. 7 Change of R/S ratio of natural stands and plantations when temperature assumes to be increased by 1 ℃ due to the expected climate change at different territorial levels of temperature
1 | Alcamo J, Moreno J M, Nováky B , et al. 2007. Europe: Impacts, adaptation and vulnerability. Contribution of working group ii to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Parry M L, Canziani O F, Palutikof J P, et al. (eds.). Climate change. Cambridge: Cambridge University Press, 4:541-580. |
2 | Antonov А М . 2007. Comparison of indices of wood macrostructure in natural and artificial Pinus sylvestris forests. Ecological Problems of the North, 10:15-16. (in Russian). |
3 | Baskerville G L . 1972. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research, 2(1):49-53. |
4 |
Berner L T, Beck P S A, Bunn A G , et al. 2013. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Global Change Biology, 19(11):3449-3462.
DOI URL PMID |
5 | Bond-Lamberty B, Wang C, Gower S T . 2002. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research, 32:1441-1450. |
6 | Bouriaud O, Bréda N, Dupouey J L , et al. 2005. Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Canadian Journal of Forest Research, 35:2920-2933. |
7 | Brockerhoff E G, Jactel H, Parrotta J A , et al. 2008. Plantation forests and biodiversity: Oxymoron or opportunity? Biodiversity and Conservation, 17:925-951. |
8 | Carrer M, Urbinati C . 2004. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology, 85(3):730-740. |
9 | Chernov N N . 2001. On a ratio of natural and artificial reforestation in the Urals. Forests of the Urals and Their Management, 21:210-219. (in Russian) |
10 | Chernyshev V D. 1974. Pathways of physiological and energetic adaptations of conifers under extreme conditions. In: Biological problems of the North: Abstract VI symp. Yakutsk: Institute of Biology, Yakutsk. Fil. Sib. Otd. Akad. Nauk SSSR, 5:13-17. (in Russian) |
11 | Danchenko A M, Frickel Y A, Verzunov A I . 1991. The formation of artificial young stands of white birch. Tomsk, Tomsk Scientific Center: 199. (in Russian) |
12 | DeLeo V L, Menge D N L, Hanks E M , et al. 2020. Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana. Global Change Biology, 26:523-538. |
13 |
Denney D A, Anderson J T . 2020. Natural history collections document biological responses to climate change: A commentary on DeLeo et al., 2020, Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana. Global Change Biology, 26:340-342.
URL PMID |
14 | Detlaf T A, Detlaf A A. 1982. Dimensionless criteria as a method of quantitative characterization of animal development. In: Mathematical biology of development. Moscow, Nauka Publishing: 25-39. (in Russian) |
15 | Dokuchaev V V . 1948. The theory of nature zones. Moscow: Geografgiz, 63. (in Russian) |
16 | Dymond C C, Beukema S, Nitschke C R , et al. 2016. Carbon sequestration in managed temperate coniferous forests under climate change. Biogeosciences, 13:1933-1947. |
17 | Emanuel W R, Shugart H H, Stevenson M P . 1985. Climate change and the broad scale distribution of terrestrial ecosystem complexes. Climate Change, 7:29-43. |
18 | FAO(Food and Agriculture Organization of the United Nations). 2006. Global forest resources assessment 2005—Progress towards sustainable forest management. FAO Forestry Paper 147, Rome, Italy, 320. |
19 |
Fatemi F R, Yanai R D, Hamburg S P , et al. 2011. Allometric equations for young northern hardwoods: The importance of age-specific equations for estimating aboveground biomass. Canadian Journal of Forest Research, 41(4):881-891.
DOI URL |
20 | Felton A, Nilsson U, Sonesson J , et al. 2016. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio, 45(S2):124-139. |
21 | Folland C K, Palmer T N, Parker D E. 2001. Climate change 2001: The scientific basis. In: Houghton J T et al. (eds.). Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 1032. |
22 | Forrester D I, Tachauer I H H, Annighoefer P , et al. 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 396:160-175. |
23 | Fu L, Sun W, Wang G . 2017. A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. Trees, 31:557-573. |
24 | Gabeev V N . 1990. Ecology and productivity of Scots pine forests. Novosibirsk, Nauka: 229. (in Russian) |
25 |
Genet A, Wernsdörfer H, Jonard M , et al. 2011. Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. Forest Ecology and Management, 261(7):1188-1202.
DOI URL |
26 | Givnish T J . 2002. Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fennica, 36(3):703-743. |
27 |
Jordan C F, Farnworth E G . 1982. Natural vs. plantation forests: A case study of land reclamation strategies for the humid tropics. Environmental Management, 6(6):485-492.
DOI URL |
28 | Khan D, Muneer M A, Nisa Z U , et al. 2019. Effect of climatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia, China. Advances in Meteorology, 2019(1):1-10. |
29 |
Kirilenko A P, Sedjo R A . 2007. Climate change impacts on forestry. Proceedings of the National Academy of Sciences of USA, 104(50):19697-19702.
DOI URL |
30 | Laing J, Binyamin J . 2013. Climate change effect on winter temperature and precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011. American Journal of Climate Change, 2(4):275-283. |
31 | Liebig J von . 1840. Organic chemistry in its application to agriculture and physiology. Braunschweig, Vieweg publishing house. : In: German text archive. http://www.deutschestextarchiv.de/liebig_agricultur_1840 . (in German) |
32 |
Liu L B, Yang H M, Xu Y , et al. 2016. Forest biomass and net primary productivity in southwestern China: A Meta-analysis focusing on environmental driving factors. Forests, 7(8):173. DOI: 10.3390/f7080173.
DOI URL |
33 | Luganskiy N A, Shipitsina O V . 2008. Comparative productivity of artificial and natural forests. Forest Bulletin, 3:50-53. (in Russian) |
34 | Lyr H, Polster H, Fiedler H J . 1967. Woody physiology. Jena, VEB Gustav Fischer publishing house, 444. (in German) |
35 | Mackey B . 2014. Counting trees, carbon and climate change. Significance, 11(1):19-23. |
36 | Makarenko A A, Biryukova Z P. 1982. Productivity and stability of artificial forest stands in Northern Kazakhstan. In: Productivity and stability of forest ecosystems. (Abstracts of papers for the international symposium, 16-18 August, 1982, Tbilisi, USSR). Krasnoyarsk: Academy of Sciences of USSR, 44. (in Russian) |
37 | Merzlenko M D . 2017. Actual aspects of artificial reforestation. Lesnoy Zhurnal (Proceedings of Higher Educational Institutions), 3:22-30. (in Russian) |
38 |
Morley J W, Batt R D, Pinsky M L . 2017. Marine assemblages respond rapidly to winter climate variability. Global Change Biology, 23:2590-2601.
DOI URL PMID |
39 |
Ni J, Zhang X S, Scurlock J M O . 2001. Synthesis and analysis of biomass and net primary productivity in Chinese forests. Annals of Forest Science, 58(4):351-384.
DOI URL |
40 | Nikitin K Е . 1965. Forest and mathematics. Forest Management, 5:25-29. (in Russian) |
41 | Niskanen A. 2000. Forest plantations in the South: Environmental-economic evaluation. In: Palo M, Vanhanen H (eds). World forests from deforestation to transition? World forests, 2. Dordrecht: Springer. |
42 | Ochał W, Wertz B, Socha J. 2013. Evaluation of aboveground biomass of black alder. In: Andrzej M. Jagodziński and Andrzej Węgiel (eds.). PoznańForest Biomass Conference 2013, 7-9 October 2013, Mierzęcin, Poland. Book of Abstracts: 40. |
43 | Odum E P. 1975. Fundamentals of ecology. Moscow: “Mir” Publishing: 740. Translated from: Odum E P. 1971. Fundamentals of ecology (the third edition). Philadelphia-London-Toronto: W. B. Saunders Company. (in Russian) |
44 |
Pawson S M, Brin A, Brockerhoff E G , et al. 2013. Plantation forests, climate change and biodiversity. Biodiversity and Conservation, 22:1203-1227.
DOI URL |
45 | Polyakov A N, Ipatov L F, Uspensky V V . 1986. Productivity of forest plantations. Moscow: Agropromizdat, 240. (in Russian) |
46 | Qiu Q, Yun Q, Zuo S , et al. 2018. Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China. Journal of Forestry Research, 29(5):1263-1276. |
47 | Rodriguez-Vallejo C, Navarro-Cerrillo R M . 2019. Contrasting response to drought and climate of planted and natural Pinus pinaster Aiton forests in Southern Spain. Forests, 10(7):603. DOI: 10.3390/f10070603. |
48 | Romanov E M, Nureeva T V, Belousov A A . 2014. The role of artificial stands of pine ( Pinus sylvestris L.) in improving the quality of the forest fund of the Kirov oblast. Forest Bulletin, 4:29-37. (in Russian) |
49 | Rubtsov V I, Novoseltseva A I, Popov V K , et al. 1976. Biological productivity of Scots pine in forest-steppe zone. Moscow: Nauka, 223. (in Russian) |
50 | Rukhovich D I, Pankova E I, Kalinina N V , et al. 2019. Quantification of the parameters of zones and facies of chestnut soils in Russia on the basis of the climatic-soil-textural index. Eurasian Soil Science, 52(3):271-282. |
51 | Schaphoff S, Reyer C P O, Schepaschenko D , et al. 2016. Tamm review: Observed and projected climate change impacts on Russia’s forests and its carbon balance. Forest Ecology and Management, 361:432-444. |
52 | Shelford V E. 1913. Animal communities in temperate America as illustrated in the Chicago region: A study in animal ecology. Issue 5, Part 1. Publish for the Geographic Society of Chicago, University of Chicago Press, 362. |
53 | Spathelf P, Stanturf J, Kleine M , et al. 2018. Adaptive measures: Integrating adaptive forest management and forest landscape restoration. Annals of Forest Science, 75(2):55. DOI: 10.1007/s13595-018-0736-4. |
54 | Stage A R, Renner D L, Chapman R C . 1988. Selected yield tables for plantations and natural stands in Inland Northwest Forests. USDA Forest Service, Intermountain Research Station. Research Paper INT- 394:60. |
55 | Stegen J C, Swenson N G, Enquist B J , et al. 2011. Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20(5):744-754. |
56 | Tolmachev A I. 1962. Fundamentals of plant habitat theory: Introduction to plant community chorology. Leningrad: State University Publishing, 100. (in Russian) |
57 | Tsel’niker Y L . 1994. Structure of spruce crown. Russian Journal of Forest Science, 4:35-44. (in Russian) |
58 | Usoltsev V A . 1972. Birch and aspen crown biomass in forests of Northern Kazakhstan. Bulletin of Agricultural Science of Kazakhstan, 4:77-80. (in Russian) |
59 | Usoltsev V A. 1985. Modeling of the structure and dynamics of forest stand biomass. Krasnoyarsk, Krasnoyarsk University Publishing, 191. (in Russian). Available at: . |
60 | Usoltsev V A. 2016. Single-tree biomass of forest-forming species in Eurasia: Database, climatе-related geography, weight tables. Yekaterinburg: Ural State Forest Engineering University, 336. Available at:http://elar.usfeu.ru/handle/123456789/5696 . |
61 | Usoltsev V A, Voronov M P, Azarenok M V , et al. 2017. Transcontinental additive allometric models and weight tables for estimating biomass of two-needled pine trees in natural forests and plantations. Agrarian Bulletin of the Urals, 165(11):56-64. (in Russian) |
62 | Usoltsev V A, Zukow W, Osmirko A A , et al. 2019. Additive biomass models for Larix spp. single-trees sensitive to temperature and precipitation in Eurasia. Ecological Questions, 30(2):57-67. |
63 | Vanninen P, Ylitalo H, Sievänen R , et al. 1996. Effects of age and site quality on the distribution of biomass in Scots pine ( Pinus sylvestris L.). Trees, 10:231-238. |
64 |
Vasseur F, Exposito-Alonso M, Ayala-Garay O J , et al. 2018. Adaptive diversification of growth allometry in the plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA, 115(13):3416-3421.
DOI URL PMID |
65 | World Weather Maps. 2007. URL: https://www.mapsofworld.com/referals/weather. |
66 |
Yu G, Liu Y, Wang X , et al. 2008. Age-dependent tree-ring growth responses to climate in Qilian juniper ( Sabina przewalskii Kom.). Trees, 22:197-204.
DOI URL |
67 | Zeng W S, Chen X Y, Pu Y , et al. 2018. Comparison of different methods for estimating forest biomass and carbon storage based on National Forest Inventory data. Forest Research, 31(1):66-71. (in Chinese) |
68 |
Zeng W S, Duo H R, Lei X D , et al. 2017. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. European Journal of Forest Research, 136:233-249.
DOI URL |
69 | Zolotukhin F M . 1966. Comparative analysis of young Scots pine development of natural and artificial origin. Forest management, 2:30-33. (in Russian) |
70 |
Zubairov B, Heußner K U, Schröder H . 2018. Searching for the best correlation between climate and tree rings in the Trans-Ili Alatau, Kazakhstan. Dendrobiology, 79:119-130.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||