Journal of Resources and Ecology ›› 2020, Vol. 11 ›› Issue (3): 253-262.DOI: 10.5814/j.issn.1674-764X.2020.03.002
• Rangeland Ecosystem Function and Management • Previous Articles Next Articles
NIU Ben1, HE Yongtao1,2, ZHANG Xianzhou1,2,*(), SHI Peili1,2, DU Mingyuan3
Received:
2020-03-02
Accepted:
2020-04-11
Online:
2020-05-30
Published:
2020-06-16
Contact:
ZHANG Xianzhou
About author:
NIU Ben, E-mail: niub@igsnrr.ac.cn
Supported by:
NIU Ben, HE Yongtao, ZHANG Xianzhou, SHI Peili, DU Mingyuan. Satellite-based Estimates of Canopy Photosynthetic Parameters for an Alpine Meadow in Northern[J]. Journal of Resources and Ecology, 2020, 11(3): 253-262.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764X.2020.03.002
Fig. 1 The 8-day step radiation observations during the years 2009 to 2011. (a) Total radiation and net radiation. (b) Photosynthetically active radiation (PAR) and the absorbed PAR by canopy (APAR).
Fig. 2 Seasonal patterns of FPAR observations (FPARg) and satellite-based FPAR estimations from 2009 to 2011 (a); and comparison with the FPARg from: 2009 (b); 2010 (c); and 2011 (d). Slope values (Slope) in (b-d) are the linear relationships between FAPRg and satellite-based FPAR estimations, and the dashed lines are the reference lines of 1:1. All linear
Method | Daily average FPAR estimations (n=21) | Mean FPAR (n=63) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean of SD | RMSE | RPE (%) | ||||||||||
2009 | 2010 | 2011 | 2009 | 2010 | 2011 | Mean | 2009 | 2010 | 2011 | Mean | Mean (SD) | |
FPAR_MOD | 0.19 (0.08) | 0.21 (0.11) | 0.20 (0.09) | 0.16 | 0.19 | 0.16 | 0.17 | 43.1 | 43.0 | 41.9 | 42.7 | 0.20 (0.09) a |
FPAR_LAI | 0.26 (0.16) | 0.30 (0.21) | 0.30 (0.20) | 0.13 | 0.20 | 0.16 | 0.17 | 23.4 | 19.1 | 15.1 | 19.2 | 0.29 (0.19) b |
FPAR_NDVI | 0.34 (0.05) | 0.36 (0.05) | 0.36 (0.06) | 0.07 | 0.06 | 0.03 | 0.05 | -4.2 | 3.8 | -1.3 | -0.5 | 0.36 (0.05) c |
FPAR_EVI | 0.35 (0.05) | 0.36 (0.06) | 0.36 (0.05) | 0.07 | 0.06 | 0.03 | 0.05 | -4.1 | 4.5 | 1.2 | -0.3 | 0.35 (0.05) c |
FPARg | 0.33 (0.08) | 0.37 (0.10) | 0.35 (0.09) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.35 (0.08) c |
Table 1 Satellite-based FPAR estimations and comparisons with tower-based FPAR observations during the growing seasons from 2009 to 2011.
Method | Daily average FPAR estimations (n=21) | Mean FPAR (n=63) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean of SD | RMSE | RPE (%) | ||||||||||
2009 | 2010 | 2011 | 2009 | 2010 | 2011 | Mean | 2009 | 2010 | 2011 | Mean | Mean (SD) | |
FPAR_MOD | 0.19 (0.08) | 0.21 (0.11) | 0.20 (0.09) | 0.16 | 0.19 | 0.16 | 0.17 | 43.1 | 43.0 | 41.9 | 42.7 | 0.20 (0.09) a |
FPAR_LAI | 0.26 (0.16) | 0.30 (0.21) | 0.30 (0.20) | 0.13 | 0.20 | 0.16 | 0.17 | 23.4 | 19.1 | 15.1 | 19.2 | 0.29 (0.19) b |
FPAR_NDVI | 0.34 (0.05) | 0.36 (0.05) | 0.36 (0.06) | 0.07 | 0.06 | 0.03 | 0.05 | -4.2 | 3.8 | -1.3 | -0.5 | 0.36 (0.05) c |
FPAR_EVI | 0.35 (0.05) | 0.36 (0.06) | 0.36 (0.05) | 0.07 | 0.06 | 0.03 | 0.05 | -4.1 | 4.5 | 1.2 | -0.3 | 0.35 (0.05) c |
FPARg | 0.33 (0.08) | 0.37 (0.10) | 0.35 (0.09) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.35 (0.08) c |
Fig. 3 Satellite-based estimations of the fractions of absorbed PAR by vegetation canopy (FPAR) and the extinction coefficient (kt) in the alpine meadow study area (n = 63)
Fig. 4 Seasonal patterns of LAI observation (LAIg) and satellite-based LAI estimations derived from satellite-based PFAR and kt estimations (a); and comparison with the LAIg from 2009 to 2011 (b). Slope values and dashed lines in (b) are the linear slope between LAIg and satellite-based LAI estimations, and the reference lines of 1:1, respectively. All linear regressions are extremely significant (P < 0.0001).
1 | Baldocchi D D, Matt D R, Hutchison B A , et al. 1984. Solar radiation within an oak—hickory forest: An evaluation of the extinction coefficients for several radiation components during fully-leafed and leafless periods. Agricultural and Forest Meteorology, 32(3):307-322. |
2 | Behera S K, Srivastava P, Pathre U V , et al. 2010. An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 Plant Canopy Analyzer. Agricultural and Forest Meteorology, 150(2):307-311. |
3 | Cao X, Zhou Z, Chen X , et al. 2015. Improving leaf area index simulation of IBIS model and its effect on water carbon and energy—A case study in Changbai Mountain broadleaved forest of China. Ecological Modelling, 303:97-104. |
4 | Chen B X, Zhang X Z, Tao J , et al. 2014. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 189-190:11-18. |
5 |
Chen H, Zhu Q, Peng C , et al. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19(10):2940-2955.
DOI URL |
6 |
Chen J, Shen M, Kato T . 2009. Diurnal and seasonal variations in light-use efficiency in an alpine meadow ecosystem: Causes and implications for remote sensing. Journal of Plant Ecology, 2(4):173-185.
DOI URL |
7 | Chen J M, Blanken P D, Black T A , et al. 1997. Radiation regime and canopy architecture in a boreal aspen forest. Agricultural and Forest Meteorology, 86(1):107-125. |
8 | de Almeida C T, Delgado R C, Galvão L S , et al. 2018. Improvements of the MODIS Gross Primary Productivity model based on a comprehensive uncertainty assessment over the Brazilian Amazonia. ISPRS Journal of Photogrammetry and Remote Sensing, 145:268-283. |
9 | Dong J, Xiao X, Wagle P , et al. 2015. Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sensing of Environment, 162:154-168. |
10 | Du M, Li Y, Zhang F , et al. 2018. Recent changes of climate and livestock productions on the Tibetan Plateau and in situ observations of NEE. Journal of Arid Land Studies, 28(S):139-142. |
11 | Fensholt R, Sandholt I, Rasmussen M S. 2004. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment, 91(3-4):490-507. |
12 | Fu G, Shen Z X, Zhang X Z , et al. 2012. Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau. Canadian Journal of Remote Sensing, 38(2):157-168. |
13 | Fu G, Wu J S. 2017. Validation of MODIS collection 6 FPAR/LAI in the alpine grassland of the Northern Tibetan Plateau. Remote Sensing Letters, 8(9):831-838. |
14 |
Gao Y, Yu G, Li S , et al. 2015. A remote sensing model to estimate ecosystem respiration in Northern China and the Tibetan Plateau. Ecological Modelling, 304:34-43.
DOI URL |
15 |
Gao Y, Yu G, Yan H , et al. 2014. A MODIS-based Photosynthetic Capacity Model to estimate gross primary production in Northern China and the Tibetan Plateau. Remote Sensing of Environment, 148:108-118.
DOI URL |
16 | Gitelson A A, Viña A, Verma S B , et al. 2006. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres, 111(D8):1-13. |
17 | Hanan N P, Burba G, Verma S B , et al. 2002. Inversion of net ecosystem CO2 flux measurements for estimation of canopy PAR absorption. Global Change Biology, 8(6):563-574. |
18 | Heinsch F A, Reeves M, Votava P , et al. 2003. GPP and NPP (MOD17A2/ A3) Products NASA MODIS Land Algorithm. MOD17 User's Guide: 1-57. |
19 | Kang Y, Özdoğan M, Zipper S , et al. 2016. How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment. Remote Sensing, 8(7):597. DOI: 10.3390/ rs8070597. |
20 |
Li J, Fang X . 1999. Uplift of the Tibetan Plateau and environmental changes. Chinese Science Bulletin, 44(23):2117-2124.
DOI URL |
21 | Liang T, Yang S, Feng Q , et al. 2016. Multi-factor modeling of above- ground biomass in alpine grassland: A case study in the Three-River Headwaters Region, China. Remote Sensing of Environment, 186:164-172. |
22 | Liu S, Cheng F, Dong S , et al. 2017. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI. Scientific Reports, 7(1):4182. DOI: 10.1038/s41598- 017-04038-4. |
23 | Ni J . 2002. Carbon storage in grasslands of China. Journal of Arid Environments, 50(2):205-218. |
24 | Niu B, He Y, Zhang X , et al. 2016. Tower-based validation and improvement of MODIS gross primary production in an alpine swamp meadow on the Tibetan Plateau. Remote Sensing, 8(7):592. DOI: 10.3390/rs8070592. |
25 |
Niu B, He Y, Zhang X , et al. 2017a. CO2 exchange in an alpine swamp meadow on the Central Tibetan Plateau. Wetlands, 37:1-19.
DOI URL |
26 | Niu B, He Y, Zhang X , et al. 2017b. Satellite-based inversion and field validation of autotrophic and heterotrophic respiration in an alpine meadow on the Tibetan Plateau. Remote Sensing, 9(6):615. DOI: 10.3390/rs9060615. |
27 | Niu B, Zhang X, He Y , et al. 2017c. Satellite-based estimation of gross primary production in an alpine swamp meadow on the Tibetan Plateau: A multi-model comparison. Journal of Resources and Ecology, 8(1):57-66. |
28 | Olofsson P, Eklundh L . 2007. Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: Modeling and evaluating the fractional absorption. Remote Sensing of Environment, 110(2):240-251. |
29 | Piao S, Zhang X, Wang T , et al. 2019. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chinese Science Bulletin, 64(27):2842-2855. |
30 |
Rossini M, Cogliati S, Meroni M , et al. 2012. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences, 9(7):2565-2584.
DOI URL |
31 | Ruimy A, Kergoat L, Bondeau A , et al. 1999. Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency. Global Change Biology, 5(S1):56-64. |
32 | Running S W, Thornton P E, Nemani R , et al. 2000. Global terrestrial gross and net primary productivity from the earth observing system, In: Sala O E, Jackson R B, Mooney H A, et al. (ed.).Methods in ecosystem science. New York, USA: Springer, 44-57. |
33 | Saito M, Kato T, Tang Y. 2009. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology, 15(1):221-228. |
34 | Saitoh T M, Nagai S, Noda H M , et al. 2012. Examination of the extinction coefficient in the Beer-Lambert law for an accurate estimation of the forest canopy leaf area index. Forest Science and Technology, 8(2):67-76. |
35 | Shi P L, Sun X M, Xu L L , et al. 2006. Net ecosystem CO2 exchange and controlling factors in a steppe - Kobresia meadow on the Tibetan Plateau. Science in China Series D-Earth Sciences, 49(S2):207-218. |
36 | Tang X, Li H, Huang N , et al. 2015. A comprehensive assessment of MODIS-derived GPP for forest ecosystems using the site-level FLUXNET database. Environmental Earth Sciences, 74(7):5907-5918. |
37 | Turner D P, Ritts W D, Cohen W B , et al. 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biology, 11(4):666-684. |
38 |
Turner D P, Ritts W D, Cohen W B , et al. 2006. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sensing of Environment, 102(3-4):282-292.
DOI URL |
39 | Varlet-Grancher C, Bonhomme R, Jacob C , et al. 1980. Caracterisation et evolution de la structure d'un couvert vegetal de canne a sucre, Annales agronomiques. |
40 | Verma M, Friedl M A, Law B E , et al. 2015. Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agricultural and Forest Meteorology, 214- 215:416-429. |
41 |
Wagle P, Gowda P H, Xiao X , et al. 2016. Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI. Agricultural and Forest Meteorology, 222:87-97.
DOI URL |
42 |
Wang Q, Tenhunen J, Granier A , et al. 2004. Long-term variations in leaf area index and light extinction in a Fagus sylvatica stand as estimated from global radiation profiles. Theoretical and Applied Climatology, 79(3):225-238.
DOI URL |
43 |
Weiss M, Baret F, Smith G J , et al. 2004. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1-2):37-53.
DOI URL |
44 |
Wohlfahrt G, Anderson-Dunn M, Bahn M , et al. 2008. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems, 11(8):1338-1351.
DOI URL |
45 |
Xiao J, Chevallier F, Gomez C , et al. 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233:111383. DOI: 10.1016/j.rse.2019.111383.
DOI URL |
46 |
Xiao X, Hollinger D, Aber J , et al. 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89(4):519-534.
DOI URL |
47 |
Xiao X, Zhang Q, Saleska S , et al. 2005. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 94(1):105-122.
DOI URL |
48 |
Xu L L, Zhang X Z, Shi P L , et al. 2007. Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. Ecological Modelling, 208(2-4):129-134.
DOI URL |
49 | Yan H, Fu Y, Xiao X , et al. 2009. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture, Ecosystems & Environment, 129(4):391-400. |
50 | Yang X, Tang J, Mustard J F , et al. 2015. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters, 42(8):2977-2987. |
51 | Yin G, Li A, Jin H , et al. 2017. Derivation of temporally continuous LAI reference maps through combining the LAINet observation system with CACAO. Agricultural and Forest Meteorology, 233:209-221. |
52 | Zhang B, Shi P, He Y , et al. 2009. The climate feature of Damxung alpine meadow carbon flux research station on the Tibetan Plateau. Journal of Mountain Science, 27(1):88-95. |
53 | Zhang L, Zhou D, Fan J , et al. 2019. Contrasting the performance of eight satellite-based GPP models in water-limited and temperature-limited grassland ecosystems. Remote Sensing, 11(11):1333. DOI: 10.3390/rs11111333. |
54 | Zhang X, Yang Y, Piao S , et al. 2015. Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 60(32):3048-3056. |
55 | Zhang Y, Yu Q, Jiang J I E , et al. 2008. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Global Change Biology, 14(4):757-767. |
56 | Zhao L, Li Y, Xu S , et al. 2006. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan Plateau. Global Change Biology, 12(10):1940-1953. |
57 | Zheng D, Zhang Q, Wu S . 2000. Mountain geoecology and sustainable development of the Tibetan Plateau. Dordrecht: Springer. |
58 | Zheng Y, Zhang L, Xiao J , et al. 2018. Sources of uncertainty in gross primary productivity simulated by light use efficiency models: Model structure, parameters, input data, and spatial resolution. Agricultural and Forest Meteorology, 263:242-257. |
59 |
Zhou X, Xin Q. 2019. Improving satellite-based modelling of gross primary production in deciduous broadleaf forests by accounting for seasonality in light use efficiency. International Journal of Remote Sensing, 40(3):931-955.
DOI URL |
60 |
Zhou Y, Fu G, Shen Z , et al. 2013. Estimation model of aboveground biomass in the Northern Tibet Plateau based on remote sensing date. Acta Prataculturae Sinica, 22(1):120-129. (in Chinese)
DOI URL |
61 | Zhu Z, Piao S, Lian X , et al. 2017. Attribution of seasonal leaf area index trends in the northern latitudes with “optimally” integrated ecosystem models. Global Change Biology, 23(11):4798-4813. |
[1] | Sydney M. GREENFIELD, Aliana C. NORRIS, Joseph P. LAMBERT, Wu liji, Se yongjun, ZHAN Jinqi, MA Bing, LI Deng, SHI Kun, Philip RIORDAN. Ungulate Mortality due to Fencing and Perceptions of Pasture Fences in Part of the Future Qilianshan National Park [J]. Journal of Resources and Ecology, 2021, 12(1): 99-109. |
[2] | CAO Yanan, ZHANG Xianzhou, NIU Ben, HE Yongtao. Comparison of Methods for Evaluating the Forage-livestock Balance of Alpine Grasslands on the Northern Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 272-282. |
[3] | FENG Yunfei, DI Yingwei, ZHANG Jing, ZHANG Xianzhou, SHI Peili, Niu Ben. Impact of Grazing Exclusion on the Surface Heat Balance in North Tibet [J]. Journal of Resources and Ecology, 2020, 11(3): 283-289. |
[4] | WANG Fang, HE Yongtao, FU Gang, NIU Ben, ZHANG Haorui, LI Meng, WANG Zhipeng, WANG Xiangtao, ZHANG Xianzhou. Effects of Enclosure on Plant and Soil Nutrients in Different Types of Alpine Grassland [J]. Journal of Resources and Ecology, 2020, 11(3): 290-297. |
[5] | WANG Xiangtao, ZHANG Xianzhou, WANG Junhao, NIU Ben. Variations in the Drought Severity Index in Response to Climate Change on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 304-314. |
[6] | ZHANG Haorui, QIN Jiwei, FU Gang. Response of Plant Community Carbon and Nitrogen Stoichiometry to Experimental Warming on the Qinghai-Tibet Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 315-321. |
[7] | ZHOU Yuke. Characterizing the Spatio-temporal Dynamics and Variability in Climate Extremes over the Tibetan Plateau during 1960-2012 [J]. Journal of Resources and Ecology, 2019, 10(4): 397-414. |
[8] | TIAN Li, ZHANG Yangjian, Claus HOLZAPFEL, HUANG Ke, CHEN Ning, TAO Jian, ZHU Juntao. Vegetation Pattern in Northern Tibet in Relation to Environmental and Geo-spatial Factors [J]. Journal of Resources and Ecology, 2018, 9(5): 526-537. |
[9] | FU Gang, SUN Wei, LI Shaowei, ZHONG Zhiming. Response of Plant Growth and Biomass Accumulation to Short-term Experimental Warming in a Highland Barley System of the Tibet [J]. Journal of Resources and Ecology, 2018, 9(2): 203-208. |
[10] | LI Wenhua. An Overview of Ecological Research Conducted on the Qinghai-Tibetan Plateau [J]. Journal of Resources and Ecology, 2017, 8(1): 1-4. |
[11] | ZHANG Xianzhou, WANG Ling, HE Yongtao, DU Mingyuan, ZHANG Jing, SHI Peili, YU Chengqun, ZHANG Yangjian. Impact of Water Vapor on Elevation-dependent Climate Change [J]. Journal of Resources and Ecology, 2017, 8(1): 5-9. |
[12] | CHAI Xi, SHI Peili, ZONG Ning, NIU Ben, HE Yongtao, ZHANG Xianzhou. Biophysical Regulation of Carbon Flux in Different Rainfall Regime in a Northern Tibetan Alpine Meadow [J]. Journal of Resources and Ecology, 2017, 8(1): 30-41. |
[13] | ZHAO Guangshuai, SHI Peili, ZONG Ning, HE Yongtao, ZHANG Xianzhou, HE Honglin, ZHANG Jing. Declining Precipitation Enhances the Effect of Warming on Phenological Variation in a Semiarid Tibetan Meadow Steppe [J]. Journal of Resources and Ecology, 2017, 8(1): 50-56. |
[14] | NIU Ben, ZHANG Xianzhou, HE Yongtao, SHI Peili, FU Gang, DU Mingyuan, ZHANG Yangjian, ZONG Ning, ZHANG Jing, WU Jianshuang. Satellite-based Estimation of Gross Primary Production in an Alpine Swamp Meadow on the Tibetan Plateau: A Multi-model Comparison [J]. Journal of Resources and Ecology, 2017, 8(1): 57-66. |
[15] | FENG Yunfei, ZHANG Xianzhou, SHI Peili, FU Gang, ZHANG Yangjian, ZHAO Guangshuai, ZENG Chaoxu, ZHANG Jing. Livestock Dynamic Responses to Climate Change in Alpine Grasslands on the Northern Tibetan Plateau: Forage Consumption and Time-lag Effects [J]. Journal of Resources and Ecology, 2017, 8(1): 88-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||