Journal of Resources and Ecology ›› 2019, Vol. 10 ›› Issue (6): 574-583.DOI: 10.5814/j.issn.1674-764X.2019.06.002
• Ecological Carrying Capacity • Previous Articles Next Articles
Received:
2019-06-29
Accepted:
2019-08-29
Online:
2019-11-30
Published:
2019-12-09
Contact:
XU Zengrang
Supported by:
ZHENG Xin, XU Zengrang. Analysis of Water Resources Carrying Capacity of the “Belt and Road” Initiative Countries based on Virtual Water Theory[J]. Journal of Resources and Ecology, 2019, 10(6): 574-583.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764X.2019.06.002
Regions | Countries | Total |
---|---|---|
Southeast Asia | Vietnam, Laos, Cambodia, Myanmar, Thailand, Malaysia, Singapore, Indonesia, Philippines, Brunei, Timor-Leste | 11 |
Eastern Europe | Estonia, Latvia, Lithuania, Belarus, Ukraine, Moldova | 6 |
Southern Europe | Serbia, Montenegro, Croatia, Slovenia, Bosnia and Herzegovina, Romania, Macedonia, Bulgaria, Albania | 9 |
South Asia | Sri Lanka, Maldives, Pakistan, India, Bangladesh, Nepal, Bhutan, Afghanistan | 8 |
West Asia | Iran, Turkey, Syria, Lebanon, Palestine, Israel, Jordan, Iraq, Kuwait, Saudi Arabia, Yemen, Oman, United Arab Emirates, Qatar, Bahrain, Georgia, Armenia, Azerbaijan | 18 |
Central Europe | Poland, Czech Republic, Slovakia, Hungary | 4 |
Central Asia | Turkmenistan, Uzbekistan, Kyrgyzstan, Tajikistan, Kazakhstan | 5 |
Other | Egypt, China, Mongolia, Russia | 4 |
Regions | Countries | Total |
---|---|---|
Southeast Asia | Vietnam, Laos, Cambodia, Myanmar, Thailand, Malaysia, Singapore, Indonesia, Philippines, Brunei, Timor-Leste | 11 |
Eastern Europe | Estonia, Latvia, Lithuania, Belarus, Ukraine, Moldova | 6 |
Southern Europe | Serbia, Montenegro, Croatia, Slovenia, Bosnia and Herzegovina, Romania, Macedonia, Bulgaria, Albania | 9 |
South Asia | Sri Lanka, Maldives, Pakistan, India, Bangladesh, Nepal, Bhutan, Afghanistan | 8 |
West Asia | Iran, Turkey, Syria, Lebanon, Palestine, Israel, Jordan, Iraq, Kuwait, Saudi Arabia, Yemen, Oman, United Arab Emirates, Qatar, Bahrain, Georgia, Armenia, Azerbaijan | 18 |
Central Europe | Poland, Czech Republic, Slovakia, Hungary | 4 |
Central Asia | Turkmenistan, Uzbekistan, Kyrgyzstan, Tajikistan, Kazakhstan | 5 |
Other | Egypt, China, Mongolia, Russia | 4 |
Evaluation criteria | Index | Index selection basis |
---|---|---|
Water resources condition | Water resources per capita | This criterion reflects regional water resources conditions and is a common index for evaluating water resources. |
Economic and social development | GDP per capita | This criterion reflects the economic development and people’s living standards of all countries. |
State of ecological environment condition | Forest coverage | Forest has an important influence on evaporation, precipitation, runoff and other water balance factors, and it reflects the impact of surface storage capacity on water resources. |
Evaluation criteria | Index | Index selection basis |
---|---|---|
Water resources condition | Water resources per capita | This criterion reflects regional water resources conditions and is a common index for evaluating water resources. |
Economic and social development | GDP per capita | This criterion reflects the economic development and people’s living standards of all countries. |
State of ecological environment condition | Forest coverage | Forest has an important influence on evaporation, precipitation, runoff and other water balance factors, and it reflects the impact of surface storage capacity on water resources. |
Index | Evaluation grade | ||||
---|---|---|---|---|---|
V1 | V2 | V3 | V4 | V5 | |
Water resources per capita | ≤500 | 500 - 1000 | 1000 - 2000 | 2000 - 3000 | > 3000 |
GDP per capita | ≤3956 | 3956 - 6716 | 6716 - 9475 | 9475 - 12 235 | > 12 235 |
Forest coverage | ≤15 | 15 - 30 | 30 - 45 | 45 - 60 | > 60 |
Index | Evaluation grade | ||||
---|---|---|---|---|---|
V1 | V2 | V3 | V4 | V5 | |
Water resources per capita | ≤500 | 500 - 1000 | 1000 - 2000 | 2000 - 3000 | > 3000 |
GDP per capita | ≤3956 | 3956 - 6716 | 6716 - 9475 | 9475 - 12 235 | > 12 235 |
Forest coverage | ≤15 | 15 - 30 | 30 - 45 | 45 - 60 | > 60 |
The bearing state | Severely overload | Moderately overload | Mildly overload | Suitably load | Fully load |
---|---|---|---|---|---|
Water resources carrying index | 1 | 1-2 | 2-3 | 3-4 | 4 |
The bearing state | Severely overload | Moderately overload | Mildly overload | Suitably load | Fully load |
---|---|---|---|---|---|
Water resources carrying index | 1 | 1-2 | 2-3 | 3-4 | 4 |
Index | The data source | Year | Note |
---|---|---|---|
Water resources per capita (m3 in hab-1 yr-1) | Food and Agriculture Organization of the United Nations ( | 2014 | The missing Montenegro data were obtained from: Me?ko et al. (2011). |
GDP per capita (current US$) | The World Bank, World Development Indicators data ( | 2014 | Syrian GDP per capita in 2014 is missing, so it was replaced by the 2007 figure. |
Forest coverage (% of land area) | The World Bank, World Development Indicators data ( | 2014 | Data refer to the ratio of forest area to the total land area. |
Index | The data source | Year | Note |
---|---|---|---|
Water resources per capita (m3 in hab-1 yr-1) | Food and Agriculture Organization of the United Nations ( | 2014 | The missing Montenegro data were obtained from: Me?ko et al. (2011). |
GDP per capita (current US$) | The World Bank, World Development Indicators data ( | 2014 | Syrian GDP per capita in 2014 is missing, so it was replaced by the 2007 figure. |
Forest coverage (% of land area) | The World Bank, World Development Indicators data ( | 2014 | Data refer to the ratio of forest area to the total land area. |
No. | Country | Level | y1 | Level | y2 | Level | y3 | WRCI |
---|---|---|---|---|---|---|---|---|
1 | Jordan | V1 | 1.00 | V2 | 1.04 | V1 | 1.00 | 1.017 |
2 | Egypt | V2 | 1.18 | V1 | 1.00 | V1 | 1.00 | 1.042 |
3 | Syria | V2 | 1.84 | V1 | 1.00 | V1 | 1.00 | 1.195 |
4 | Pakistan | V3 | 2.25 | V1 | 1.00 | V1 | 1.00 | 1.291 |
5 | Uzbekistan | V3 | 2.53 | V1 | 1.00 | V1 | 1.00 | 1.356 |
6 | Afghanistan | V3 | 2.84 | V1 | 1.00 | V1 | 1.00 | 1.428 |
7 | India | V3 | 2.43 | V1 | 1.00 | V2 | 1.59 | 1.537 |
8 | Tajikistan | V4 | 3.46 | V1 | 1.00 | V1 | 1.00 | 1.571 |
9 | Armenia | V4 | 3.65 | V2 | 1.01 | V1 | 1.00 | 1.623 |
10 | Iran | V3 | 2.69 | V2 | 1.57 | V1 | 1.00 | 1.633 |
11 | Bangladesh | V5 | 4.00 | V1 | 1.00 | V1 | 1.00 | 1.698 |
12 | Kyrgyzstan | V5 | 4.00 | V1 | 1.00 | V1 | 1.00 | 1.698 |
13 | Moldova | V5 | 4.00 | V1 | 1.00 | V1 | 1.00 | 1.698 |
14 | Mongolia | V5 | 4.00 | V2 | 1.08 | V1 | 1.00 | 1.732 |
15 | Ukraine | V5 | 4.00 | V1 | 1.00 | V2 | 1.11 | 1.738 |
16 | Maldives | V1 | 1.00 | V3 | 2.85 | V1 | 1.00 | 1.774 |
17 | Lebanon | V2 | 1.48 | V3 | 2.70 | V1 | 1.00 | 1.825 |
18 | Nepal | V5 | 4.00 | V1 | 1.00 | V2 | 1.69 | 1.939 |
19 | Iraq | V4 | 3.35 | V2 | 2.00 | V1 | 1.00 | 1.963 |
20 | Philippines | V5 | 4.00 | V1 | 1.00 | V2 | 1.85 | 1.995 |
No. | Country | Level | y1 | Level | y2 | Level | y3 | WRCI |
---|---|---|---|---|---|---|---|---|
1 | Jordan | V1 | 1.00 | V2 | 1.04 | V1 | 1.00 | 1.017 |
2 | Egypt | V2 | 1.18 | V1 | 1.00 | V1 | 1.00 | 1.042 |
3 | Syria | V2 | 1.84 | V1 | 1.00 | V1 | 1.00 | 1.195 |
4 | Pakistan | V3 | 2.25 | V1 | 1.00 | V1 | 1.00 | 1.291 |
5 | Uzbekistan | V3 | 2.53 | V1 | 1.00 | V1 | 1.00 | 1.356 |
6 | Afghanistan | V3 | 2.84 | V1 | 1.00 | V1 | 1.00 | 1.428 |
7 | India | V3 | 2.43 | V1 | 1.00 | V2 | 1.59 | 1.537 |
8 | Tajikistan | V4 | 3.46 | V1 | 1.00 | V1 | 1.00 | 1.571 |
9 | Armenia | V4 | 3.65 | V2 | 1.01 | V1 | 1.00 | 1.623 |
10 | Iran | V3 | 2.69 | V2 | 1.57 | V1 | 1.00 | 1.633 |
11 | Bangladesh | V5 | 4.00 | V1 | 1.00 | V1 | 1.00 | 1.698 |
12 | Kyrgyzstan | V5 | 4.00 | V1 | 1.00 | V1 | 1.00 | 1.698 |
13 | Moldova | V5 | 4.00 | V1 | 1.00 | V1 | 1.00 | 1.698 |
14 | Mongolia | V5 | 4.00 | V2 | 1.08 | V1 | 1.00 | 1.732 |
15 | Ukraine | V5 | 4.00 | V1 | 1.00 | V2 | 1.11 | 1.738 |
16 | Maldives | V1 | 1.00 | V3 | 2.85 | V1 | 1.00 | 1.774 |
17 | Lebanon | V2 | 1.48 | V3 | 2.70 | V1 | 1.00 | 1.825 |
18 | Nepal | V5 | 4.00 | V1 | 1.00 | V2 | 1.69 | 1.939 |
19 | Iraq | V4 | 3.35 | V2 | 2.00 | V1 | 1.00 | 1.963 |
20 | Philippines | V5 | 4.00 | V1 | 1.00 | V2 | 1.85 | 1.995 |
No. | Country | Level | y1 | Level | y2 | Level | y3 | WRCI |
---|---|---|---|---|---|---|---|---|
1 | Sri Lanka | V4 | 3.53 | V1 | 1.00 | V3 | 2.19 | 2.005 |
2 | Albania | V5 | 4.00 | V2 | 1.23 | V2 | 1.87 | 2.097 |
3 | China | V3 | 2.97 | V3 | 2.35 | V2 | 1.49 | 2.195 |
4 | Bahrain | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
5 | Israel | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
6 | Kuwait | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
7 | Oman | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
8 | Qatar | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
9 | Saudi Arabia | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
10 | United Arab Emirates | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
11 | Azerbaijan | V5 | 4.00 | V3 | 2.43 | V1 | 1.00 | 2.295 |
12 | Turkmenistan | V5 | 4.00 | V3 | 2.45 | V1 | 1.00 | 2.306 |
13 | Myanmar | V5 | 4.00 | V1 | 1.00 | V3 | 2.91 | 2.364 |
14 | Georgia | V5 | 4.00 | V2 | 1.17 | V3 | 2.71 | 2.367 |
15 | Thailand | V5 | 4.00 | V2 | 1.72 | V3 | 2.14 | 2.400 |
16 | Timor-Leste | V5 | 4.00 | V1 | 1.00 | V4 | 3.03 | 2.404 |
17 | Serbia | V5 | 4.00 | V2 | 1.81 | V3 | 2.07 | 2.413 |
18 | Singapore | V1 | 1.00 | V5 | 4.00 | V2 | 1.54 | 2.443 |
19 | Vietnam | V5 | 4.00 | V1 | 1.00 | V4 | 3.20 | 2.467 |
20 | Macedonia | V5 | 4.00 | V2 | 1.55 | V3 | 2.64 | 2.499 |
21 | Indonesia | V5 | 4.00 | V1 | 1.00 | V4 | 3.32 | 2.508 |
22 | Bosnia and Herzegovina | V5 | 4.00 | V2 | 1.45 | V3 | 2.85 | 2.531 |
23 | Cambodia | V5 | 4.00 | V1 | 1.00 | V4 | 3.52 | 2.578 |
24 | Bhutan | V5 | 4.00 | V1 | 1.00 | V5 | 4.00 | 2.744 |
25 | Laos | V5 | 4.00 | V1 | 1.00 | V5 | 4.00 | 2.744 |
26 | Bulgaria | V5 | 4.00 | V3 | 2.42 | V3 | 2.36 | 2.764 |
27 | Turkey | V4 | 3.62 | V4 | 3.96 | V2 | 1.02 | 2.857 |
28 | Kazakhstan | V5 | 4.00 | V5 | 4.00 | V1 | 1.00 | 2.954 |
29 | Romania | V5 | 4.00 | V4 | 3.20 | V3 | 2.01 | 2.970 |
30 | Poland | V3 | 2.59 | V5 | 4.00 | V3 | 2.06 | 2.994 |
31 | Czech Republic | V3 | 2.24 | V5 | 4.00 | V3 | 2.30 | 2.999 |
No. | Country | Level | y1 | Level | y2 | Level | y3 | WRCI |
---|---|---|---|---|---|---|---|---|
1 | Sri Lanka | V4 | 3.53 | V1 | 1.00 | V3 | 2.19 | 2.005 |
2 | Albania | V5 | 4.00 | V2 | 1.23 | V2 | 1.87 | 2.097 |
3 | China | V3 | 2.97 | V3 | 2.35 | V2 | 1.49 | 2.195 |
4 | Bahrain | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
5 | Israel | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
6 | Kuwait | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
7 | Oman | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
8 | Qatar | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
9 | Saudi Arabia | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
10 | United Arab Emirates | V1 | 1.00 | V5 | 4.00 | V1 | 1.00 | 2.256 |
11 | Azerbaijan | V5 | 4.00 | V3 | 2.43 | V1 | 1.00 | 2.295 |
12 | Turkmenistan | V5 | 4.00 | V3 | 2.45 | V1 | 1.00 | 2.306 |
13 | Myanmar | V5 | 4.00 | V1 | 1.00 | V3 | 2.91 | 2.364 |
14 | Georgia | V5 | 4.00 | V2 | 1.17 | V3 | 2.71 | 2.367 |
15 | Thailand | V5 | 4.00 | V2 | 1.72 | V3 | 2.14 | 2.400 |
16 | Timor-Leste | V5 | 4.00 | V1 | 1.00 | V4 | 3.03 | 2.404 |
17 | Serbia | V5 | 4.00 | V2 | 1.81 | V3 | 2.07 | 2.413 |
18 | Singapore | V1 | 1.00 | V5 | 4.00 | V2 | 1.54 | 2.443 |
19 | Vietnam | V5 | 4.00 | V1 | 1.00 | V4 | 3.20 | 2.467 |
20 | Macedonia | V5 | 4.00 | V2 | 1.55 | V3 | 2.64 | 2.499 |
21 | Indonesia | V5 | 4.00 | V1 | 1.00 | V4 | 3.32 | 2.508 |
22 | Bosnia and Herzegovina | V5 | 4.00 | V2 | 1.45 | V3 | 2.85 | 2.531 |
23 | Cambodia | V5 | 4.00 | V1 | 1.00 | V4 | 3.52 | 2.578 |
24 | Bhutan | V5 | 4.00 | V1 | 1.00 | V5 | 4.00 | 2.744 |
25 | Laos | V5 | 4.00 | V1 | 1.00 | V5 | 4.00 | 2.744 |
26 | Bulgaria | V5 | 4.00 | V3 | 2.42 | V3 | 2.36 | 2.764 |
27 | Turkey | V4 | 3.62 | V4 | 3.96 | V2 | 1.02 | 2.857 |
28 | Kazakhstan | V5 | 4.00 | V5 | 4.00 | V1 | 1.00 | 2.954 |
29 | Romania | V5 | 4.00 | V4 | 3.20 | V3 | 2.01 | 2.970 |
30 | Poland | V3 | 2.59 | V5 | 4.00 | V3 | 2.06 | 2.994 |
31 | Czech Republic | V3 | 2.24 | V5 | 4.00 | V3 | 2.30 | 2.999 |
No. | Country | Level | y1 | Level | y2 | Level | y3 | WRCI |
---|---|---|---|---|---|---|---|---|
1 | Belarus | V5 | 4.00 | V3 | 2.58 | V3 | 2.84 | 3.002 |
2 | Hungary | V5 | 4.00 | V5 | 4.00 | V2 | 1.53 | 3.137 |
3 | Montenegro | V5 | 4.00 | V3 | 2.24 | V5 | 4.00 | 3.263 |
4 | Croatia | V5 | 4.00 | V5 | 4.00 | V3 | 2.29 | 3.404 |
5 | Lithuania | V5 | 4.00 | V5 | 4.00 | V3 | 2.32 | 3.415 |
6 | Slovakia | V5 | 4.00 | V5 | 4.00 | V3 | 2.69 | 3.543 |
7 | Russia | V5 | 4.00 | V5 | 4.00 | V4 | 3.32 | 3.762 |
8 | Estonia | V5 | 4.00 | V5 | 4.00 | V4 | 3.42 | 3.799 |
9 | Malaysia | V5 | 4.00 | V4 | 3.62 | V5 | 4.00 | 3.841 |
10 | Latvia | V5 | 4.00 | V5 | 4.00 | V4 | 3.60 | 3.860 |
No. | Country | Level | y1 | Level | y2 | Level | y3 | WRCI |
---|---|---|---|---|---|---|---|---|
1 | Belarus | V5 | 4.00 | V3 | 2.58 | V3 | 2.84 | 3.002 |
2 | Hungary | V5 | 4.00 | V5 | 4.00 | V2 | 1.53 | 3.137 |
3 | Montenegro | V5 | 4.00 | V3 | 2.24 | V5 | 4.00 | 3.263 |
4 | Croatia | V5 | 4.00 | V5 | 4.00 | V3 | 2.29 | 3.404 |
5 | Lithuania | V5 | 4.00 | V5 | 4.00 | V3 | 2.32 | 3.415 |
6 | Slovakia | V5 | 4.00 | V5 | 4.00 | V3 | 2.69 | 3.543 |
7 | Russia | V5 | 4.00 | V5 | 4.00 | V4 | 3.32 | 3.762 |
8 | Estonia | V5 | 4.00 | V5 | 4.00 | V4 | 3.42 | 3.799 |
9 | Malaysia | V5 | 4.00 | V4 | 3.62 | V5 | 4.00 | 3.841 |
10 | Latvia | V5 | 4.00 | V5 | 4.00 | V4 | 3.60 | 3.860 |
Ranking | The FAO code | Agricultural and livestock products | Annual average net imported virtual water (×109 m3 yr-1) |
---|---|---|---|
1 | 236 | Soya beans | 223.11 |
2 | 767 | Cotton lint | 15.88 |
3 | 257 | Palm oil | 14.09 |
4 | 56 | Maize | 9.22 |
5 | 15 | Wheat | 8.04 |
6 | 270 | Rapeseed | 7.39 |
7 | 162 | Sugar Raw Centrifugal | 6.45 |
8 | 83 | Sorghum | 5.45 |
9 | 44 | Barely | 3.87 |
10 | 619 | Fruit fresh nes | 3.77 |
11 | 289 | Sesame seed | 3.20 |
12 | 27 | Rice | 2.89 |
13 | 1035 | Meat, pig | 2.77 |
14 | 836 | Natural rubber | 2.72 |
15 | 187 | Peas, dry | 2.58 |
Ranking | The FAO code | Agricultural and livestock products | Annual average net imported virtual water (×109 m3 yr-1) |
---|---|---|---|
1 | 236 | Soya beans | 223.11 |
2 | 767 | Cotton lint | 15.88 |
3 | 257 | Palm oil | 14.09 |
4 | 56 | Maize | 9.22 |
5 | 15 | Wheat | 8.04 |
6 | 270 | Rapeseed | 7.39 |
7 | 162 | Sugar Raw Centrifugal | 6.45 |
8 | 83 | Sorghum | 5.45 |
9 | 44 | Barely | 3.87 |
10 | 619 | Fruit fresh nes | 3.77 |
11 | 289 | Sesame seed | 3.20 |
12 | 27 | Rice | 2.89 |
13 | 1035 | Meat, pig | 2.77 |
14 | 836 | Natural rubber | 2.72 |
15 | 187 | Peas, dry | 2.58 |
The FAO code | Agricultural and livestock products | Net imported virtual water (×109 m3 yr-1) | The FAO code | Agricultural and livestock products | Net imported virtual water (×109 m3 yr-1) |
---|---|---|---|---|---|
236 | Soya beans | 162 | Sugar Raw Centrifugal | ||
Brazil | 100.12 | Brazil | 3.95 | ||
America | 84.94 | Cuba | 0.73 | ||
Argentina | 21.40 | Thailand | 0.50 | ||
767 | Cotton lint | 836 | Natural rubber | ||
America | 4.18 | Thailand | 2.48 | ||
India | 4.04 | Malaysia | 0.09 | ||
Australia | 2.73 | Viet Nam | 0.07 | ||
56 | Maize | 867 | Meat, cattle | ||
America | 2.27 | Uruguay | 0.31 | ||
Ukraine | 2.20 | Australia | 0.28 | ||
Laos | 0.12 | New Zealand | 0.12 | ||
15 | Wheat | 977 | Meat, sheep | ||
Australia | 2.25 | New Zealand | 0.59 | ||
America | 2.17 | Australia | 0.40 | ||
Canada | 1.13 | Uruguay | 0.02 | ||
30 | Rice | 1035 | Meat, pig | ||
Viet Nam | 1.57 | Germany | 0.49 | ||
Thailand | 0.62 | Spain | 0.39 | ||
Pakistan | 0.52 | America | 0.37 | ||
257 | Oil, palm | ||||
Malaysia | 6.83 | ||||
Indonesia | 6.72 |
The FAO code | Agricultural and livestock products | Net imported virtual water (×109 m3 yr-1) | The FAO code | Agricultural and livestock products | Net imported virtual water (×109 m3 yr-1) |
---|---|---|---|---|---|
236 | Soya beans | 162 | Sugar Raw Centrifugal | ||
Brazil | 100.12 | Brazil | 3.95 | ||
America | 84.94 | Cuba | 0.73 | ||
Argentina | 21.40 | Thailand | 0.50 | ||
767 | Cotton lint | 836 | Natural rubber | ||
America | 4.18 | Thailand | 2.48 | ||
India | 4.04 | Malaysia | 0.09 | ||
Australia | 2.73 | Viet Nam | 0.07 | ||
56 | Maize | 867 | Meat, cattle | ||
America | 2.27 | Uruguay | 0.31 | ||
Ukraine | 2.20 | Australia | 0.28 | ||
Laos | 0.12 | New Zealand | 0.12 | ||
15 | Wheat | 977 | Meat, sheep | ||
Australia | 2.25 | New Zealand | 0.59 | ||
America | 2.17 | Australia | 0.40 | ||
Canada | 1.13 | Uruguay | 0.02 | ||
30 | Rice | 1035 | Meat, pig | ||
Viet Nam | 1.57 | Germany | 0.49 | ||
Thailand | 0.62 | Spain | 0.39 | ||
Pakistan | 0.52 | America | 0.37 | ||
257 | Oil, palm | ||||
Malaysia | 6.83 | ||||
Indonesia | 6.72 |
1 |
Brindha K . 2017. International virtual water flows from agricultural and livestock products of India. Journal of Cleaner Production, 161:922-930.
DOI URL |
2 | Cheng G D . 2003. Virtual Water - A strategic instrument to achieve water security. Bulletin of Chinese Academy of Sciences, 4:260-265. (in Chinese) |
3 | Food and Agriculture Organization of the United Nations (FAO). 2011. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) Managing Systems at Risk. London: The Food and Agriculture Organization of the United Nations and Earthscan. |
4 | Han X . 2012. Analysis and application of flow pattern of virtual water for crops in China. Journal of Economics of Water Resources, 30(6):1-6,69. (in Chinese) |
5 | Hoekstra A Y, Chapagain A K, Aldaya M M , et al. 2012. The Water Footprint Assessment Manual-Setting the Global standard method. Translated by Liu J G, Zeng Z, Zhao Q B, et al. Beijing: Science Press. (in Chinese) |
6 | Hoekstra A Y . 2003. Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade, Value of Water Research Report Series No.12. The Netherlands: UNESCO-IHE Institute for Water Education. |
7 | Hui Y H, Jiang X H, Huang Q , et al. 2001. Research on evaluation index system of water resources bearing capacity. Bulletin of Soil and Water Conservation, 1:30-34. (in Chinese) |
8 |
Lamastra L, Miglietta P P, Toma P , et al. 2017. Virtual water trade of agri- food products: Evidence from italian-chinese relations. Science of The Total Environment, 599- 600:474-482.
DOI URL PMID |
9 |
Loucks D P . 2000. Sustainable water resources management. International Water Resources Association, 25(1):3-10.
DOI URL PMID |
10 | Ma C, Xu C X, Tian G L . 2011. The virtual water flow in China’s foreign trade of agricultural products. Resources Science, 33(4):729-735. (in Chinese) |
11 | Mekonnen M M, Hoekstra A Y . 2010 a. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products, Value of Water Research Report Series No.47. The Netherlands: UNESCO-IHE Institute for Water Education. |
12 | Mekonnen M M, Hoekstra A Y . 2010 b. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products, Value of Water Research Report Series No.48. The Netherlands: UNESCO-IHE Institute for Water Education. |
13 | Mekonnen M M, Hoekstra A Y . 2011. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption, Value of Water Research Report Series No. 50. The Netherlands: UNESCO- IHE Institute for Water Education. |
14 | Meško G, Dimitrijević D, Fields C B . 2011. Understanding and Managing Threats to the Environment in South Eastern Europe. The Netherlands: Springer. |
15 | Mubako S T . 2011. Frameworks for Estimating Virtual Water Flows Among U.S. States. PhD diss., Southern Illinois University Carbondale. |
16 |
National development and reform commission, the ministry of foreign affairs, the ministry of commerce. 2015. Vision and proposed actions outlined on jointly building Silk Road Economic Belt and 21st-Century Maritime Silk Road. Finance & Accounting for Communications, 4:82-87. (in Chinese)
DOI URL PMID |
17 |
Novo P, Garrido A, Varela-Ortega C . 2009. Are virtual water flows in Spanish grain trade consistent with relative water scarcity. Ecological Economics, 68(5):1454-1464.
DOI URL |
18 | Ruan B Q, Shen J . 1998. Calculating model for moderately bearing capacity of regional water resources. Journal of Soil Erosion and Soil and Water Conservation, 3:58-62,86. (in Chinese) |
19 | Wang Y J, Yang G, Xu H L . 2010. Evaluation of water resources carrying capacity based on fuzzy comprehensive evaluation on river basin in Arid Zone. Advanced Materials Research, 113- 116:488-494. |
20 | Water Conservancy Bureau of Hydrology. 1987. Water Resources Ministry of China Evaluation. Beijing: China Water & Power Press. (in Chinese) |
21 | Wei S J, He P . 2015. Analysis and enlightenment of virtual water trade of Chinese and Asean agricultural products. International Business, 12:36-42. (in Chinese) |
22 | World Water Assessment Programme (WWAP). 2019. Leaving No One Behind: The United Nations World Water Development Report. Paris: United Nations Educational, Scientific and Cultural Organization. |
23 |
Wu S H, Liu L L, Liu Y H , et al. 2018. Geographical patterns and environmental change risks in terrestrial areas of the “Belt and Road”. Acta Geographica Sinica, 73(7):1214-1225. (in Chinese)
DOI URL |
24 |
Xia J, Zhu Y Z , 2002. The measurement of water resources security: A study and challenge on water resources carrying capacity. Journal of Natural Resources, 17(3):262-269. (in Chinese)
DOI URL |
25 |
Xu Y P . 1993. A study of comprehensive evaluation of the water resource carrying capacity in the arid area—A case study in the Hetian river basin of Xinjiang. Journal of Natural Resources, 8(3):229-237. (in Chinese)
DOI URL |
26 | Zhang J H, Li J, Tang Y . 2012. Analysis of the spatio-temporal matching of water resource and economic development factors in China. Resources Science, 34(8):1546-1555. (in Chinese) |
27 | Zhu Y X, Huang Y X, Wang L J . 2002. Synthetical evaluating method of water resources sustainable development and using status. Journal of Jilin University (Earth Science Edition), 32(1):55-57. (in Chinese) |
28 | Zhu Y Z, Xia J, Tan G . 2003. Measurement and evaluation of water resources carrying capacity of northwest China. Resources Science, 25(4):43-48. (in Chinese) |
29 | Zuo Q T, Hao L G, Liu J H , et al. 2018. Characteristics of water resources in “Belt and Road” district and its framework of water security system. Water Resources Protection, 34(4):16-21, 28. (in Chinese) |
30 | Zuo Q T, Zhang P J, Ma J X . 2004. Calculating model and key questions about carrying capacity of water resources. Water Resources and Hydropower Engineering, 35(2):5-8, 11-94. (in Chinese) |
[1] | ZHEN Lin, XU Zengrang, ZHAO Yuan, WANG Jijun, HU Yunfeng, WANG Juanle. Ecological Carrying Capacity and Green Development in the “Belt and Road” Initiative Region [J]. Journal of Resources and Ecology, 2019, 10(6): 569-573. |
[2] | JIN Mingming, XU Zengrang. Characteristics of Agricultural and Livestock Products Trade Flows between China and the “Belt and Road” Initiative Region: From the Perspective of Biocapacity [J]. Journal of Resources and Ecology, 2019, 10(6): 584-597. |
[3] | CHEN Shaofeng, LIU Yang, SU Liyang. Sustainable Agriculture in the “Belt and Road” Region in Conjunction with the Sustainable Development Goals [J]. Journal of Resources and Ecology, 2019, 10(6): 649-656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||