Journal of Resources and Ecology ›› 2019, Vol. 10 ›› Issue (3): 296-306.DOI: 10.5814/j.issn.1674-764X.2019.03.008
• Forest Ecosystem • Previous Articles Next Articles
Received:
2018-10-22
Accepted:
2019-01-10
Online:
2019-05-30
Published:
2019-05-30
Contact:
TIAN Li
About author:
First author: MIAO Chunqiong, E-mail:
Supported by:
TIAN Li. Interdependent Dynamics of LAI-ET across Roofing Landscapes: the Mongolian and Tibetan Plateaus[J]. Journal of Resources and Ecology, 2019, 10(3): 296-306.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764X.2019.03.008
Fig. 1 (a) The spatial distributions of land cover types on the two plateaus; (b) The average annual LAI during 2000-2014; (c) The average annual ET during 2000-2014; (d-e) The probability density function (PDF) for LAI and ET.
Fig. 2 Spatial distributions of the change trends for LAI in the growing season (May-September); the inset map shows significant increases (blue) and decreases (red) (P<0.05).
Fig. 3 Spatial distributions of the change trends for ET in the growing season (May-September); the inset map shows significant increases (blue) and decreases (red) (P<0.05).
Var | Loc | Sig. Area | Annual | May | June | July | August | September |
---|---|---|---|---|---|---|---|---|
LAI | TP | Total (1000 km2) | 57.41 | 65.03 | 38.39 | 47.92 | 48.00 | 42.96 |
Decreasing | 29.06 | 3.16 | 6.53 | 19.99 | 18.55 | 31.03 | ||
(%) | (50.62) | (4.86) | (17.01) | (41.72) | (38.65) | (72.23) | ||
Increasing | 28.35 | 61.86 | 31.86 | 27.93 | 29.45 | 11.93 | ||
(%) | (49.38) | (95.13) | (82.99) | (58.28) | (61.35) | (27.77) | ||
MP | Total (1000 km2) | 101.93 | 57.12 | 100.63 | 80.81 | 62.59 | 61.36 | |
Decreasing | 5.19 | 17.25 | 2.24 | 4.99 | 6.21 | 7.63 | ||
(%) | (5.09) | (30.20) | (2.23) | (6.17) | (9.92) | (12.43) | ||
Increasing | 96.75 | 39.87 | 98.39 | 75.82 | 56.38 | 53.73 | ||
(%) | (94.92) | (69.80) | (97.77) | (93.83) | (90.08) | (87.57) | ||
ET | TP | Total (1000 km2) | 571.90 | 196.90 | 478.20 | 476.80 | 333.90 | 265.70 |
Decreasing | 447.80 | 154.30 | 332.40 | 278.70 | 295.40 | 250.10 | ||
(%) | (78.30) | (78.36) | (69.51) | (58.46) | (88.47) | (94.12) | ||
Increasing | 124.10 | 42.60 | 145.80 | 198.00 | 38.50 | 15.60 | ||
(%) | (21.70) | (21.64) | (30.49) | (41.54) | (11.53) | (5.88) | ||
MP | Total (1000 km2) | 388.20 | 86.10 | 343.30 | 496.80 | 224.60 | 49.80 | |
Decreasing | 46.50 | 53.80 | 48.40 | 29.40 | 78.10 | 30.30 | ||
(%) | (11.99) | (62.42) | (14.11) | (5.92) | (34.79) | (60.82) | ||
Increasing | 341.60 | 32.40 | 294.80 | 467.40 | 146.40 | 19.50 | ||
(%) | (88.01) | (37.58) | (85.89) | (94.08) | (65.21) | (39.18) |
Table 1 The average annual and standard deviation (std) of LAI and ET during 2000-2014 by average annual LAI class on the Mongolian Plateau (MP) and the Tibetan Plateau (TP)
Var | Loc | Sig. Area | Annual | May | June | July | August | September |
---|---|---|---|---|---|---|---|---|
LAI | TP | Total (1000 km2) | 57.41 | 65.03 | 38.39 | 47.92 | 48.00 | 42.96 |
Decreasing | 29.06 | 3.16 | 6.53 | 19.99 | 18.55 | 31.03 | ||
(%) | (50.62) | (4.86) | (17.01) | (41.72) | (38.65) | (72.23) | ||
Increasing | 28.35 | 61.86 | 31.86 | 27.93 | 29.45 | 11.93 | ||
(%) | (49.38) | (95.13) | (82.99) | (58.28) | (61.35) | (27.77) | ||
MP | Total (1000 km2) | 101.93 | 57.12 | 100.63 | 80.81 | 62.59 | 61.36 | |
Decreasing | 5.19 | 17.25 | 2.24 | 4.99 | 6.21 | 7.63 | ||
(%) | (5.09) | (30.20) | (2.23) | (6.17) | (9.92) | (12.43) | ||
Increasing | 96.75 | 39.87 | 98.39 | 75.82 | 56.38 | 53.73 | ||
(%) | (94.92) | (69.80) | (97.77) | (93.83) | (90.08) | (87.57) | ||
ET | TP | Total (1000 km2) | 571.90 | 196.90 | 478.20 | 476.80 | 333.90 | 265.70 |
Decreasing | 447.80 | 154.30 | 332.40 | 278.70 | 295.40 | 250.10 | ||
(%) | (78.30) | (78.36) | (69.51) | (58.46) | (88.47) | (94.12) | ||
Increasing | 124.10 | 42.60 | 145.80 | 198.00 | 38.50 | 15.60 | ||
(%) | (21.70) | (21.64) | (30.49) | (41.54) | (11.53) | (5.88) | ||
MP | Total (1000 km2) | 388.20 | 86.10 | 343.30 | 496.80 | 224.60 | 49.80 | |
Decreasing | 46.50 | 53.80 | 48.40 | 29.40 | 78.10 | 30.30 | ||
(%) | (11.99) | (62.42) | (14.11) | (5.92) | (34.79) | (60.82) | ||
Increasing | 341.60 | 32.40 | 294.80 | 467.40 | 146.40 | 19.50 | ||
(%) | (88.01) | (37.58) | (85.89) | (94.08) | (65.21) | (39.18) |
Fig. 6 Boxplots of MODIS ET retrieval as a function of MODIS-estimated leaf area index (LAI) classed (0.5 LAI steps); stratified average data for the two plateaus
[1] | Bala G, Caldeira K, Wickett M, et al.2007. Combined climate and carbon-cycle effects of large-scale deforestation.Proceedings of the National Academy of Sciences, USA, 104(16): 6550-6555. |
[2] | Bonan G B, Pollard D, Thompson S L.1992. Effects of Boreal Forest Vegetation on Global Climate.Nature, 359(6397): 716-718. |
[3] | Brulebois E, Castel T, Richard Y, et al.2015. Hydrological response to an abrupt shift in surface air temperature over France in 1987/88.Journal of Hydrology, 531: 892-901. |
[4] | Chen J, Wan S, Henebry G, et al.2013. Dryland East Asia: Land Dynamics amid Social and Climate Change. Higher Education Press. (in Chinese) |
[5] | Choi M, Mu Q Z, Kim H, et al.2017. Ecosystem-dynamics link to hydrologic variations for different land-cover types.Terrestrial Atmospheric and Oceanic Sciences, 28(3): 437-462. |
[6] | Cleugh H A, Leuning R, Mu Q Z, et al.2007. Regional evaporation estimates from flux tower and MODIS satellite data.Remote Sensing of Environment, 106(3): 285-304. |
[7] | Davin E L, de Noblet-Ducoudre N.2010. Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes.Journal of Climate, 23(1): 97-112. |
[8] | Enkhtur K, Pfeiffer M, Lkhagva A, et al.2017. Response of moths (Lepidoptera: Heterocera) to livestock grazing in Mongolian rangelands.Ecological Indicators, 72: 667-674. |
[9] | Fatichi S, Ivanov V Y.2014. Interannual variability of evapotranspiration and vegetation productivity.Water Resources Research, 50(4): 3275-3294. |
[10] | French A N, Hunsaker D J, Clarke T R.2012. Forecasting spatially distributed cotton evapotranspiration by assimilating remotely sensed and ground-based observations.Journal of Irrigation and Drainage Engineering-ASCE, 138(11): 984-992. |
[11] | Friedl M A, McIver D K, Hodges J C F, et al.2002. Global land cover mapping from MODIS: algorithms and early results.Remote Sensing of Environment, 83(1): 287-302. |
[12] | Garcia M, Fernandez N, Villagarcia L, et al.2014. Accuracy of the Temperature-Vegetation Dryness Index using MODIS under water-limited vs. energy-limited evapotranspiration conditions.Remote Sensing of Environment, 149: 100-117. |
[13] | Gu S, Tang Y H, Cui X Y, et al.2008. Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau.Journal of Geophysical Research,113. Doi: 10.1029/2007JD009173. |
[14] | IPCC.2014. Climate Change 2014. Synthesis Report Summary Chapter for Policymakers. |
[15] | Jassal R S, Black T A, Spittlehouse D L, et al.2009. Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas- fir stands.Agricultural and Forest Meteorology, 149(6): 1168-1178. |
[16] | John R, Chen J Q, Lu N, et al.2009. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004. Environmental Research Letters, 4(4). Doi: 10.1088/1748-9326/4/4/045010 |
[17] | John R, Chen J Q, Ou-Yang Z T, et al.2013. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environmental Research Letters, 8(3). Doi:10.1088/1748-9326/8/3/035033 |
[18] | Jung M, Reichstein M, Ciais P, et al.2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply.Nature, 467(7318): 951-954. |
[19] | Keeling R F, Piper S C, Heimann M.1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O-2 concentration.Nature, 381(6579): 218-221. |
[20] | Krishnan P, Meyers T P, Scott R L, et al.2012. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America.Agricultural and Forest Meteorology, 153: 31-44. |
[21] | Krishnaswamy J, John R, Joseph S.2014. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.Global Change Biology, 20(1): 203-215. |
[22] | Lee X, Goulden M L, Hollinger D Y, et al.2011. Observed increase in local cooling effect of deforestation at higher latitudes.Nature, 479(7373): 384-387. |
[23] | Li G, Zhang F M, Jing Y S, et al.2017. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013.Science of the Total Environment, 596: 256-265. |
[24] | Li Q Y, Xu L, Pan X B, et al.2016. Modeling phenological responses of Inner Mongolia grassland species to regional climate change. Environmental Research Letters , 11(1). Doi:10.1088/1748-9326/11/1/015002 |
[25] | Li Z Y, Wu W Z, Liu X H, et al.2017b. Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China.Ecological Modelling, 353: 86-94. |
[26] | Loranty M M, Berner L T, Goetz S J, et al.2014. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.Global Change Biology, 20(2), 594-606. |
[27] | Lu N, Wilske B, Ni J, et al.2009. Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales. Environmental Research Letters, 4(4). Doi:10.1088/1748-9326/4/4/045006 |
[28] | Miao L J, Muller D, Cui X F, et al.2017. Changes in vegetation phenology on the Mongolian Plateau and their climatic determinants. Plos One, 12(12). Doi: 10.1371/journal.pone.0190313 |
[29] | Mu Q, Heinsch F A, Zhao M, et al.2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data.Remote Sensing of Environment, 111(4): 519-536. |
[30] | Myers-Smith I H, Elmendorf S C, Beck P S A, et al.2015. Climate sensitivity of shrub growth across the tundra biome.Nature Climate Change, 5(9): 887-892. |
[31] | Myneni R B, Hall F G, Sellers P J, et al.1995. The Interpretation of Spectral Vegetation Indexes.IEEE Transactions on Geoscience and Remote Sensing, 33(2): 481-486. |
[32] | Nemani R R, Keeling C D, Hashimoto,Het al.2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999.Science, 300(5626): 1560-1563. |
[33] | Ni J.2004. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China.Plant Ecology, 174(2): 217-234. |
[34] | Oki T, Kanae S.2006. Global hydrological cycles and world water resources.Science, 313(5790): 1068-1072. |
[35] | Palmer A R, Weideman C, Finca A, et al.2015. Modelling annual evapotranspiration in a semi-arid, African savanna: functional convergence theory, MODIS LAI and the Penman-Monteith equation. African Journal of Range & Forage Science, 32(1): 33-39. |
[36] | Peng S S, Piao S L, Ciais P, et al.2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation.Nature. DOI: 10.1038/nature12434 |
[37] | Pielke R A.2005. Land use and climate change.Science, 310(5754): 1625-1626. |
[38] | Planque C, Carrer D, Roujean J L.2017. Analysis of MODIS albedo changes over steady woody covers in France during the period of 2001-2013.Remote Sensing of Environment, 191(15): 13-29. |
[39] | Shen M G, Piao S L, Jeong S J, et al.2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth.Proceedings of the National Academy of Sciences, USA, 112(30): 9299-9304. |
[40] | Tasumi M, Hirakawa K, Hasegawa N, et al.2014. Application of MODIS Land Products to Assessment of Land Degradation of Alpine Rangeland in Northern India with Limited Ground-Based Information.Remote Sensing, 6: 9260-9276. |
[41] | Tian L, Zhang Y J, Zhu J T.2014. Decreased surface albedo driven by denser vegetation on the Tibetan Plateau. Environmental Research Letters, 9(10). Doi: 10.1088/1748-9326/9/10/104001 |
[42] | Tong X J, Zhang J S, Meng P, Li J, et al.2017. Environmental controls of evapotranspiration in a mixed plantation in North China.International Journal of Biometeorology, 61(2): 227-238. |
[43] | Wang W G, Li J X, Yu Z B, et al.2018. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying.Journal of Hydrology, 559: 471-485. |
[44] | Wang Z S, Schaaf C B, Strahler A H, et al.2014. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods.Remote Sensing of Environment, 140: 60-77. |
[45] | You Q G, Xue X, Peng F, et al.2017. Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau.Agricultural and Forest Meteorology, 232: 48-65. |
[46] | Zhang G L, Zhang Y J, Dong J W, et al.2013. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences, USA, 110(11): 4309-4314. |
[47] | Zhang R Z, Yang Q Y.1982.Physical Geography of Xizang. Beijing: Science Press .(in Chinese) |
[48] | Zhang Y, Kadota T, Ohata T, et al.2007. Environmental controls on evapotranspiration from sparse grassland in Mongolia.Hydrological Processes, 21: 2016-2027. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||