Journal of Resources and Ecology ›› 2019, Vol. 10 ›› Issue (1): 77-85.DOI: 10.5814/j.issn.1674-764X.2019.01.010
• Orginal Article • Previous Articles Next Articles
Received:
2018-06-22
Accepted:
2018-09-10
Online:
2019-01-28
Published:
2019-01-28
Melkamu Meseret Alemu. Analysis of Spatio-temporal Land Surface Temperature and Normalized Difference Vegetation Index Changes in the Andassa Watershed, Blue Nile Basin, Ethiopia[J]. Journal of Resources and Ecology, 2019, 10(1): 77-85.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764X.2019.01.010
Satellite image | Path/row | Sensor | Resolution (m) | No. of bands | Date of acquisition |
---|---|---|---|---|---|
Landsat-5 | 170/52 | TM | 30 | 7 | 04-02-1986 |
Landsat-5 | 170/52 | TM | 30 | 7 | 11-02-2000 |
Landsat-8 | 170/52 | OLI-TIRS | 30 | 11 | 07-02-2016 |
Table 1 Characteristics of satellite imagery used in this study
Satellite image | Path/row | Sensor | Resolution (m) | No. of bands | Date of acquisition |
---|---|---|---|---|---|
Landsat-5 | 170/52 | TM | 30 | 7 | 04-02-1986 |
Landsat-5 | 170/52 | TM | 30 | 7 | 11-02-2000 |
Landsat-8 | 170/52 | OLI-TIRS | 30 | 11 | 07-02-2016 |
Variable | Description | Value | |
---|---|---|---|
(Landsat-5 TM) | (Landsat-8 OLI-TIRS) | ||
K1 | Thermal constant | 607.76 | 774.8853 |
K2 | Thermal constant | 1260.56 | 1321.0789 |
Lmin | Minimum value of Radiance | 1.238 | 0.10033 |
Lmax | Maximum value of Radiance | 15.303 | 22.00180 |
Qcalmin | Minimum Quantize Calibration | 1 | 1 |
Qcalmax | Maximum Quantize Calibration | 255 | 65535 |
Table 2 Values of parameters of Landsat images from metadata
Variable | Description | Value | |
---|---|---|---|
(Landsat-5 TM) | (Landsat-8 OLI-TIRS) | ||
K1 | Thermal constant | 607.76 | 774.8853 |
K2 | Thermal constant | 1260.56 | 1321.0789 |
Lmin | Minimum value of Radiance | 1.238 | 0.10033 |
Lmax | Maximum value of Radiance | 15.303 | 22.00180 |
Qcalmin | Minimum Quantize Calibration | 1 | 1 |
Qcalmax | Maximum Quantize Calibration | 255 | 65535 |
NDVI | 1986 | 2000 | 2016 | |||
---|---|---|---|---|---|---|
Area (ha) | Percent (%) | Area (ha) | Percent (%) | Area (ha) | Percent (%) | |
<0 | 120.33 | 0.20 | 72.72 | 0.12 | 13.86 | 0.02 |
0-0.1 | 26505.09 | 43.47 | 26728.11 | 43.84 | 3292.65 | 5.40 |
0.1-0.2 | 26319.42 | 43.17 | 24039.99 | 39.43 | 40717.98 | 66.79 |
0.2-0.3 | 6464.16 | 10.61 | 7447.95 | 12.22 | 14968.26 | 24.55 |
0.3-0.4 | 1367.91 | 2.24 | 2197.08 | 3.60 | 1838.52 | 3.02 |
>0.4 | 190.98 | 0.31 | 482.04 | 0.79 | 136.62 | 0.22 |
Table 3 The NDVI distributions in different classes of years 1986, 2000 and 2016
NDVI | 1986 | 2000 | 2016 | |||
---|---|---|---|---|---|---|
Area (ha) | Percent (%) | Area (ha) | Percent (%) | Area (ha) | Percent (%) | |
<0 | 120.33 | 0.20 | 72.72 | 0.12 | 13.86 | 0.02 |
0-0.1 | 26505.09 | 43.47 | 26728.11 | 43.84 | 3292.65 | 5.40 |
0.1-0.2 | 26319.42 | 43.17 | 24039.99 | 39.43 | 40717.98 | 66.79 |
0.2-0.3 | 6464.16 | 10.61 | 7447.95 | 12.22 | 14968.26 | 24.55 |
0.3-0.4 | 1367.91 | 2.24 | 2197.08 | 3.60 | 1838.52 | 3.02 |
>0.4 | 190.98 | 0.31 | 482.04 | 0.79 | 136.62 | 0.22 |
Year | Min | Q1 | Mean | Q2 | Q3 | Max | Sd |
---|---|---|---|---|---|---|---|
1986 | 13.78 | 28.77 | 30.58 | 30.42 | 32.46 | 39.16 | 3.06 |
2000 | 14.25 | 29.18 | 30.77 | 31.24 | 32.86 | 39.16 | 2.79 |
2016 | 17.39 | 31.20 | 32.88 | 33.08 | 34.88 | 40.64 | 2.86 |
Table 4 Summary statistics of LST of the study area for different years.
Year | Min | Q1 | Mean | Q2 | Q3 | Max | Sd |
---|---|---|---|---|---|---|---|
1986 | 13.78 | 28.77 | 30.58 | 30.42 | 32.46 | 39.16 | 3.06 |
2000 | 14.25 | 29.18 | 30.77 | 31.24 | 32.86 | 39.16 | 2.79 |
2016 | 17.39 | 31.20 | 32.88 | 33.08 | 34.88 | 40.64 | 2.86 |
Year | LST and NDVI | LST and Elevation | NDVI and Elevation |
---|---|---|---|
1986 | -0.43 | -0.07 | -0.11 |
2000 | -0.50 | -0.28 | -0.03 |
2016 | -0.46 | -0.40 | -0.06 |
Table 5 Correlation between LST, NDVI and elevation
Year | LST and NDVI | LST and Elevation | NDVI and Elevation |
---|---|---|---|
1986 | -0.43 | -0.07 | -0.11 |
2000 | -0.50 | -0.28 | -0.03 |
2016 | -0.46 | -0.40 | -0.06 |
[29] | Pal S, Ziaul S.2017. Detection of land use and land cover change and land surface temperature in English Bazar urban centre q. The Egyptian Journal of Remote Sensing and Space Sciences,20(1):125-125. 2016.11.003. |
[30] | Pettorelli N, Vik J O, Mysterud A, et al.2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution,20(9):503-503. . |
[31] | Rozenstein O, Qin Z, Derimian Y, et al.2014. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors,14:5768-5780. |
[32] | Sobrino J.2008. Split-Window Coefficients for Land Surface Temperature Retrieval From Low-Resolution Thermal Infrared Sensors. IEEE Geoscience and Remote Sensing Letters,5(4):806-806. 2008.2001636. |
[33] | Sobrino J A,Jiménez-Muñoz J C, Paolini L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment,90(4):434-434. 2004.02.003. |
[34] | Sobrino J A, Raissouni N.2000. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. International Journal of Remote Sensing,21(2):353-353. . |
[35] | Srivastava P K, Majumdar T J,& Bhattacharya A K. 2009. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat- 7 ETM + thermal infrared data. Advances in Space Research,43(10):1563-1563. . |
[36] | Sruthi S,Aslam M A M.2015.Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data: a Case Study of Raichur District. Aquatic Procedia, 4:1258-1264. .2015.02.164. |
[37] | Stisen S, Sandholt I, Nørgaard A, et al.2008. Combining the triangle method with thermal inertia to estimate regional evapotranspiration — Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sensing of Environment, 112: 1242-1255. https:// doi.org/10.1016/j.rse.2007.08.013. |
[38] | Tang R, Li Z, Tang B. 2010. Remote Sensing of Environment An application of the T s - VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation . Remote Sensing of Environment,114(3):540-540. 2009.10.012. |
[39] | Tilahun A.2015. Application of GIS for Estimation of Brightness Temperature using Landsat Data in Kilite Awulalo, Tigray Ethiopia.Advances in Physics Theories and Applications, 40: 16-24. |
[40] | Tomlinson C J, Chapman L, Thornes J E, et al.2011. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorological Applications,18(3):296-296. 287. |
[41] | Valor E, Caselles V.1996. Mapping Land Surface Emissivity from NDVI : Application to European, African, and South American Areas.Remote Sens. Environ, 184: 167-184. |
[42] | Vlassova L, Perez-Cabello F, Rodrigues M, et al.2014. Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images.Remote Sensing, 6: 6136-62. |
[43] | Wang F, Qin Z, Song C, et al.2015. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sensing,7(4):4268-4268. https:// doi.org/10.3390/rs70404268. |
[44] | Waseem M, Halmy A, Gessler P E, et al. 2015. Land use / land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA .Applied Geography, 63: 101-112. .2015.06.015. |
[45] | Weng Q, Lu D, Schubring J.2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies . Remote Sensing of Environment,89(4):467-483.2003.11.005. |
[46] | Zareie S, Khosravi H, Nasiri A, et al.2016. Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran. Solid Earth, 7: 1551-1564. . |
[1] | Anyamba A, Small J L, Britch S C, et al.2014. Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. PLoS ONE,9(3):23-23. . |
[2] | Avdan U, Jovanovska G.2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data.Journal of Sensors, 2016:1-8. |
[3] | Bonafoni S, Anniballe R, Gioli B, et al.2017. Downscaling Landsat Land Surface Temperature over the urban area of Florence. European Journal of Remote Sensing, 49(2016):553-569. |
[4] | Bustos E, Meza F J.2015. A method to estimate maximum and minimum air temperature using MODIS surface temperature and vegetation data: application to the Maipo Basin, Chile. Theoretical and Applied Climatology,120(1-2):211-211. |
[5] | Chen C C, Xie G D, Zhen L, et al.2008. Analysis of Jinghe watershed vegetation dynamics and evaluation of its relation to precipitation.Acta Ecologica Sinica, 28(3): 0925-0938. |
[6] | Chander G, Markham B L, Helder D L, et al.2009. Remote sensing of environment summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment,113(5):893-893. 2009. 01.007. |
[7] | Ding H, Elmore A J.2015. Remote sensing of environment spatio-temporal patterns in water surface temperature from Landsat time series data in the Chesapeake Bay, U. S. A. Remote Sensing of Environment, 168: 335-348. 2015.07.009. |
[8] | Fathian F, Prasad A D, Dehghan Z, et al.2015. Influence of land use / land cover change on land surface temperature using RS and GIS techniques. International Journal of Hydrology Science and Technology,5(3):195-195. 2015.071348. |
[9] | Fu B, Burgher I.2015. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater.Journal of Arid Environments, 113: 59-68. 2014. 09.010. |
[10] | Gashaw T, Tulu T, Argaw M, et al.2017. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environmental Systems Research, 6(17): 1-14. |
[11] | Gashaw T, Tulu T, Argaw M, et al.2018. Modeling the hydrological impacts of land use / land cover changes in the Andassa watershed, Blue Nile Basin , Ethiopia. Science of the Total Environment, 619: 1394-1408. 2017.11.191. |
[12] | Gedif B, Wondmagegn W, Ayalew T, et al.2016. Analysis of the existing early warning systems : The case of Amhara national regional state.International Journal of Advanced Scientific Research, 1(9): 24-28. |
[13] | Gémes O, Tobak Z, van Leeuwen B.2016. Satellite based analysis of surface urban heat island intensity. Journal of Environmental Geography, 9: 23-30. |
[14] | Gillies R R, Carlson T N.1995. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. Journal of Applied Meteorology,34: 745-756. .CO;2. |
[15] | Goetz S J.1997. M ulti-sensor analysis of NDVI , surface temperature and biophysical.International Journal of Remote Sensing, 18(1): 71-94. |
[16] | Gorgani S A, Panahi M, Rezaie F.2013. The relationship between NDVI and LST in the urban area of Mashhad , Iran. International Conference on Civil Engineering Architecture & Urban Sustainable Development 27&28 November 2013, Tabriz, Iran,. |
[17] | Jeevalakshmi D.2017. Land surface temperature retrieval from LANDSAT data using emissivity estimation.International Journal of Applied Engineering Research, 12(20): 9679-9687. |
[18] | Jesus J B De, Santana I D M.2017. Estimation of land surface temperature in caatinga area using Landsat 8 data.Journal of Hyperspectral Remote Sensing, 7: 150-157. |
[19] | Jiang Z, Huete A R, Chen J, et al.2006. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment,101(3):366-366. 2006.01.003. |
[20] | Jiménez-muñoz J C, Sobrino J A, Gillespie A, et al. 2006. Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sensing of Environment, 103: 474-487. .2006.04.012. |
[21] | Karnieli A, Agam N, Pinker R T, et al.2009. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23:618-633. .1. |
[22] | Khandelwal S, Goyal R, Kaul N, et al.2017. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Sciences,21(1):87-87. 2017.01.005. |
[23] | Kinthada N.R., Gurram M.K., Eadara A., et al.2014. Land Use/Land Cover and NDVI Analysis for Monitoring the Health of Micro-Watersheds of Sarada River Basin, Visakhapatnam District, India.Geology & Geosciences, 3(2): 146-153. doi: 10.4172/2329-6755.1000146 |
[24] | Mimbrero M R, Vlassova L, Pé F.2014. Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images. Remote Sensing, 6: 6136-6162. |
[25] | Moran M S, Clarke T R, Inoue Y, et al.1994. Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index.Remote Sens.Environ., 49: 246-263. |
[26] | Orhan O, Ekercin S, Dadaser-celik F.2014. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey. The Scientific World Journal, 2014: 1-11. |
[27] | Orhan O, Yakar M.2016. Investigating land surface temperature changes using landsat data in Konya, Turkey, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8, 285-289. . |
[28] | Pal S, C. Akoma O.2009. Water Scarcity in Wetland Area within Kandi Block of West Bengal: A Hydro-Ecological Assessment.Ethiopian Journal of Environmental Studies and Management, 2(3): 1-12. |
[47] | Zhibin R, Haifeng Z, Xingyuan H, et al.2015. Estimation of the Relationship Between Urban Vegetation Configuration and Land Surface Temperature with Remote Sensing. Journal of the Indian Society of Remote Sensing, 43(1): 89-100. . |
[1] | SONG Minghua, LI Meng, HUO Jiajuan, WU Liang, ZHANG Xianzhou. Multifunctionality and Thresholds of Alpine Grassland on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 263-271. |
[2] | GONG Guoli, LIU Jiyuan, SHAO Quanqin, ZHAI Jun. Sand-fixing Function under the Change of Vegetation Coverage in a Wind Erosion Area in Northern China [J]. Journal of Resources and Ecology, 2014, 5(2): 105-114. |
[3] | SUN Liang, SUN Rui, LI Xiaowen, CHEN Huailiang, ZHANG Xuefen. Estimating Evapotranspiration Using Improved Fractional Vegetation Cover and Land Surface Temperature Space [J]. Journal of Resources and Ecology, 2011, 2(3): 225-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||