Journal of Resources and Ecology ›› 2022, Vol. 13 ›› Issue (6): 1098-1108.DOI: 10.5814/j.issn.1674-764x.2022.06.014
• Tourism Resource and Ecotourism • Previous Articles Next Articles
LI Ying1,2(), DAI Yuexingtong1, HAN Jingting1,3, ZOU Tongqian1,*(
)
Received:
2021-10-18
Accepted:
2022-03-15
Online:
2022-11-30
Published:
2022-10-12
Contact:
ZOU Tongqian
About author:
LI Ying, E-mail: liying20190063@bisu.edu.cn
Supported by:
LI Ying, DAI Yuexingtong, HAN Jingting, ZOU Tongqian. Evolution of Landscape Pattern and Tourism Service Value in Zhangjiakou City[J]. Journal of Resources and Ecology, 2022, 13(6): 1098-1108.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2022.06.014
Code | Land use types | |
---|---|---|
1 | Arable land | Paddy field |
2 | Dry land | |
3 | Woodland | Woodland |
4 | Shrubwood | |
5 | Open woodland | |
6 | Other woodlands | |
7 | Grassland | High coverage grassland |
8 | Medium coverage grassland | |
9 | Low coverage grassland | |
10 | Waters | River |
11 | Lake | |
12 | Reservoir pit | |
13 | Beach land | |
14 | Construction land | Urban area |
15 | Rural residential area | |
16 | Other construction land | |
17 | Unused land | Sand |
18 | Saline alkali land | |
19 | Swamp | |
20 | Bare land | |
21 | Bare rock |
Table 1 The land use types in Zhangjiakou
Code | Land use types | |
---|---|---|
1 | Arable land | Paddy field |
2 | Dry land | |
3 | Woodland | Woodland |
4 | Shrubwood | |
5 | Open woodland | |
6 | Other woodlands | |
7 | Grassland | High coverage grassland |
8 | Medium coverage grassland | |
9 | Low coverage grassland | |
10 | Waters | River |
11 | Lake | |
12 | Reservoir pit | |
13 | Beach land | |
14 | Construction land | Urban area |
15 | Rural residential area | |
16 | Other construction land | |
17 | Unused land | Sand |
18 | Saline alkali land | |
19 | Swamp | |
20 | Bare land | |
21 | Bare rock |
Land use type | Ecosystem service value coefficient (104 yuan km-2) | Tourism ecological service value coefficient (104 yuan km-2) |
---|---|---|
Arable land | 62.03 | 0.09 |
Woodland | 196.13 | 11.33 |
Grassland | 64.98 | 0.35 |
Waters | 487.77 | 43.76 |
Construction land | 0 | 0 |
Unused land | 3.71 | 0.09 |
Table 2 Ecological service value coefficients
Land use type | Ecosystem service value coefficient (104 yuan km-2) | Tourism ecological service value coefficient (104 yuan km-2) |
---|---|---|
Arable land | 62.03 | 0.09 |
Woodland | 196.13 | 11.33 |
Grassland | 64.98 | 0.35 |
Waters | 487.77 | 43.76 |
Construction land | 0 | 0 |
Unused land | 3.71 | 0.09 |
Period | Type | Arable land | Woodland | Grassland | Waters | Construction land | Unused land |
---|---|---|---|---|---|---|---|
Arable land | 17627.05 | 1.00 | 1.00 | 5.97 | 29.87 | 4.98 | |
Woodland | 6.97 | 6919.19 | 1.00 | ||||
2000-2005 | Grassland | 68.70 | 9691.24 | 1.99 | |||
Waters | 22.90 | 1.00 | 1.99 | 568.55 | 6.97 | ||
Construction land | 792.58 | ||||||
Unused land | 3.98 | 1.00 | 871.25 | ||||
Arable land | 17701.72 | 5.97 | 1.00 | 20.91 | |||
Woodland | 6917.19 | 3.98 | |||||
2005-2010 | Grassland | 9679.29 | 2.99 | 11.95 | |||
Waters | 575.52 | ||||||
Construction land | 825.44 | ||||||
Unused land | 18.92 | 3.98 | 860.29 | ||||
Arable land | 17700.73 | 1.00 | 1.00 | 17.92 | |||
Woodland | 2.99 | 6917.19 | 2.99 | ||||
2010-2015 | Grassland | 9672.32 | 1.00 | 5.97 | |||
Waters | 583.49 | ||||||
Construction land | 862.28 | ||||||
Unused land | 2.99 | 1.99 | 855.31 | ||||
Arable land | 11966.44 | 1221.74 | 2852.71 | 231.00 | 1085.32 | 279.79 | |
Woodland | 1000.69 | 4633.04 | 1142.08 | 23.90 | 85.63 | 7.97 | |
2015-2018 | Grassland | 2731.23 | 1763.40 | 4701.74 | 80.65 | 249.92 | 113.51 |
Waters | 246.94 | 41.82 | 69.70 | 163.30 | 31.86 | 30.87 | |
Construction land | 492.88 | 28.88 | 101.56 | 9.96 | 233.99 | 18.92 | |
Unused land | 388.33 | 25.89 | 85.63 | 27.88 | 36.84 | 283.78 | |
Arable land | 16903.17 | 14.94 | |||||
Woodland | 1.00 | 7816.32 | 28.88 | 1.99 | |||
2018-2020 | Grassland | 2.99 | 9012.17 | 1.00 | 11.95 | ||
Waters | 1.00 | 537.68 | 1.00 | 1.00 | |||
Construction land | 23.90 | 4.98 | 2.99 | 4.98 | 1692.71 | 1.99 | |
Unused land | 8.96 | 1.99 | 10.95 | 716.91 |
Table 3 Land use transfer matrix (Unit: km2)
Period | Type | Arable land | Woodland | Grassland | Waters | Construction land | Unused land |
---|---|---|---|---|---|---|---|
Arable land | 17627.05 | 1.00 | 1.00 | 5.97 | 29.87 | 4.98 | |
Woodland | 6.97 | 6919.19 | 1.00 | ||||
2000-2005 | Grassland | 68.70 | 9691.24 | 1.99 | |||
Waters | 22.90 | 1.00 | 1.99 | 568.55 | 6.97 | ||
Construction land | 792.58 | ||||||
Unused land | 3.98 | 1.00 | 871.25 | ||||
Arable land | 17701.72 | 5.97 | 1.00 | 20.91 | |||
Woodland | 6917.19 | 3.98 | |||||
2005-2010 | Grassland | 9679.29 | 2.99 | 11.95 | |||
Waters | 575.52 | ||||||
Construction land | 825.44 | ||||||
Unused land | 18.92 | 3.98 | 860.29 | ||||
Arable land | 17700.73 | 1.00 | 1.00 | 17.92 | |||
Woodland | 2.99 | 6917.19 | 2.99 | ||||
2010-2015 | Grassland | 9672.32 | 1.00 | 5.97 | |||
Waters | 583.49 | ||||||
Construction land | 862.28 | ||||||
Unused land | 2.99 | 1.99 | 855.31 | ||||
Arable land | 11966.44 | 1221.74 | 2852.71 | 231.00 | 1085.32 | 279.79 | |
Woodland | 1000.69 | 4633.04 | 1142.08 | 23.90 | 85.63 | 7.97 | |
2015-2018 | Grassland | 2731.23 | 1763.40 | 4701.74 | 80.65 | 249.92 | 113.51 |
Waters | 246.94 | 41.82 | 69.70 | 163.30 | 31.86 | 30.87 | |
Construction land | 492.88 | 28.88 | 101.56 | 9.96 | 233.99 | 18.92 | |
Unused land | 388.33 | 25.89 | 85.63 | 27.88 | 36.84 | 283.78 | |
Arable land | 16903.17 | 14.94 | |||||
Woodland | 1.00 | 7816.32 | 28.88 | 1.99 | |||
2018-2020 | Grassland | 2.99 | 9012.17 | 1.00 | 11.95 | ||
Waters | 1.00 | 537.68 | 1.00 | 1.00 | |||
Construction land | 23.90 | 4.98 | 2.99 | 4.98 | 1692.71 | 1.99 | |
Unused land | 8.96 | 1.99 | 10.95 | 716.91 |
Fig. 6 The landscape disturbance, landscape vulnerability, land use dynamics, LESI standardized radar map. Note: See Table 1 for the definitions of the land use type numbers in the legend. ξ means the sample score.
[1] |
Costanza R, d'Arge R, de Groot R, et al. 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630): 253-260.
DOI URL |
[2] |
Du J P, Shao J G, Zhou C R, et al. 2018. Study on reclamation decision of coal mine temporary construction land based on ecological suitability and triangle model. Journal of Natural Resources, 33(11): 1872-1885. (in Chinese)
DOI URL |
[3] |
Fang Y, Wang J, Huang L Y, et al. 2020. Diagnosis and identification of key areas of ecological protection and restoration in territorial space based on ecological security pattern: A case study of Yantai. Journal of Natural Resources, 35(1): 190-203. (in Chinese)
DOI URL |
[4] |
Goepel K D. 2018. Implementation of an online software tool for the analytic hierarchy Process (AHP-OS). International Journal of the Analytic Hierarchy Process, 10(3): 69928136. DOI: 10.13033/ijahp.v10i3.590.
DOI |
[5] | Han Z H, Li J D, Yin H, et al. 2010. Ecological security analysis of Liaohe Delta wetland based on landscape pattern. Ecology and Environmental Sciences, 19(3): 701-705. (in Chinese) |
[6] | Hao C L, Wang Y, Xiao W H, et al. 2012. Ecological security analysis of Wulie River Basin in Chengde based on landscape pattern. South-to-North Water Transfers and Water Science & Technology, 10(5): 67-71. (in Chinese) |
[7] |
Kiker G A, Bridges T S, Varghese A, et al. 2005. Application of multicriteria decision analysis in environmental decision making. Integrated Environmental Assessment and Management, 1(2): 95-108.
PMID |
[8] |
Li S C, Xiao W, Zhao Y L, et al. 2020. Incorporating ecological risk index in the multi-process MCRE model to optimize the ecological security pattern in a semi-arid area with intensive coal mining: A case study in northern China. Journal of Cleaner Production, 247: 119143. DOI: 10.1016/j.jclepro.2019.119143.
DOI URL |
[9] | Li X Y, Zhang S W. 2005. Dynamic analysis of ecological security in western Jilin based on landscape structure. Arid Zone Research, 22(1): 57-62. (in Chinese) |
[10] |
Li Y, Wu L Y, Han Q, et al. 2021. Estimation of remote sensing based ecological index along the Grand Canal based on PCA-AHP-TOPSIS methodology. Ecological Indicators, 122: 107214. DOI: 10.1016/J.ECOLIND.2020.107214.
DOI URL |
[11] | Lin M Z, Xu Y P, Xie H Y, et al. 2010. Evaluation of ecological security in Zhongshan based on PSR-AHP method. Journal of South China Normal University (Natural Science Edition), (4): 107-111. (in Chinese) |
[12] | Liu M Z, Zhang H J, Pei H W. 2020. Analysis of land use change and driving force in Chongli Area based on principal component analysis. Journal of Hebei Institute of Architecture and Civil Engineering, 38(2): 70-75. (in Chinese) |
[13] |
Liu P, Zhang X Y, Ma C, et al. 2021. Ecological security assessment based on remote sensing and landscape ecology model. Journal of Sensors, 2021: 6684435. DOI: 10.1155/2021/6684435.
DOI |
[14] | Pei H, Wei Y, Wang X Y, et al. 2014. Method of cultivated land landscape ecological security evaluation and its application. Transactions of the Chinese Society of Agricultural Engineering, 30(9): 212-219. (in Chinese) |
[15] |
Rao K S, Pant R. 2001. Land use dynamics and landscape change pattern in a typical micro watershed in the mid elevation zone of central Himalaya, India. Agriculture, Ecosystems & Environment, 86(2): 113-124.
DOI URL |
[16] |
Wang C X, Yu C Y, Chen T Q, et al. 2020. Can the establishment of ecological security patterns improve ecological protection? An example of Nanchang, China. Science of the Total Environment, 740: 140051. DOI: 10.1016/J.SCITOTENV.2020.140051.
DOI URL |
[17] | Wang G, Wang L, Wu W. 2007. Recognition on regional ecological security definition and assessment system. Acta Ecologica Sinica, 27(4): 1627-1637. (in Chinese) |
[18] | Wang P, Wang Y J, Liu X P, et al. 2018. Analysis of land use landscape pattern change of ecological migration in arid region: A case study of Hongsibu District, Ningxia. Journal of Arid Land Resources and Environment, 32(12): 69-74. (in Chinese) |
[19] | Wang Q, Wang X N, Mou W Y, et al. 2019a. Study on land use landscape pattern change in Huangshi. Chinese Agricultural Science Bulletin, 35(9): 81-85. (in Chinese) |
[20] |
Wang S D, Zhang X Y, Wu T X, et al. 2019b. The evolution of landscape ecological security in Beijing under the influence of different policies in recent decades. Science of the Total Environment, 646: 49-57.
DOI URL |
[21] | Wang S J, Xu X W, Deng J, et al. 2017. Chinese skiing-tourism destination: Spatial patterns, existing problems and development countermeasures. Journal of Glaciology and Geocryology, 39(4): 902-909. (in Chinese) |
[22] | Wang W, Feng Q S, Guo N, et al. 2015. Dynamic monitoring of vegetation coverage based on long time-series NDVI data sets in northwest arid region of China. Pratacultural Science, 32(12): 1969-1979. (in Chinese) |
[23] | Wu J S, Zhang P H. 2017. Impact of urban landscape pattern on urban waterlogging: A case study of Shenzhen. Acta Geographica Sinica, 72(3): 444-456. (in Chinese) |
[24] | Xie H L. 2011. Spatial characteristic analysis of land use eco-risk based on landscape structure: A case study in the Xingguo County, Jiangxi Province. China Environmental Science, 31(4): 688-695. (in Chinese) |
[25] |
Xu W X, Wang J M, Zhang M, et al. 2021. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. Journal of Cleaner Production, 286: 125523. DOI: 10.1016/J.JCLEPRO.2020.125523.
DOI URL |
[26] | Xu X L, Pang Z G, Yu X F. 2014. Spatial-temporal pattern analysis of land use/cover change:Methods & applications. Beijing, China: Science and Technology Literature Press: 90-108. (in Chinese) |
[27] | Yue C J, Wu Z W, Zhen T X, et al. 2010. Evaluation of tourism competitiveness of coastal cities. Journal of Natural Resources, 25(5): 795-801. (in Chinese) |
[28] |
Zhang D, Wang X R, Qu L P, et al. 2020. Land use/cover predictions incorporating ecological security for the Yangtze River Delta region, China. Ecological Indicators, 119: 106841. DOI: 10.1016/j.ecolind.2020.106841.
DOI URL |
[29] |
Zhao D, Li F, Wang R S. 2013. Effects of land use change on ecosystem service value: A case study in Huaibei City, China. Acta Ecologica Sinica, 33(8): 2343-2349. (in Chinese)
DOI URL |
[30] | Zhu Y N, Pu C L. 2020. Analysis on landscape pattern change and ecological security of land use in Urumqi. Ecological Science, 39(2): 133-144. (in Chinese) |
[1] | LI Yujie, FU Hui. The Heat Island Effect Response to the Urban Landscape Pattern of Haikou based on the “Source-Sink” Theory [J]. Journal of Resources and Ecology, 2022, 13(2): 257-269. |
[2] | HE Yafen. Spatial Behavior Characteristics of Land Use based on Fractal Theory: Taking Poyang Lake Area as an Example [J]. Journal of Resources and Ecology, 2021, 12(2): 192-202. |
[3] | CAO Yuhong,CHEN Chen,LIU Chonggang,LI Lulu,LIU Meiyun. Temporal and Spatial Variations of Eco-asset Patterns and the Factors Driving Change in the Wanjiang Demonstration Area [J]. Journal of Resources and Ecology, 2019, 10(3): 282-288. |
[4] | XU Yuantao, MIN Qingwen, YUAN Zheng, BAI Yanying, SUN Yehong, LI Jing, CAO Zhi. Identifying Landscape Pattern Metrics for the Hani Terrace in Yunnan, China [J]. Journal of Resources and Ecology, 2013, 4(3): 212-219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||