Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (6): 840-848.DOI: 10.5814/j.issn.1674-764x.2021.06.012
• Typical Ecological Restoration Modes and Their Ecological Effects • Previous Articles Next Articles
WEI Peng1(), AN Shazhou2, KE Mei1, LI Chao1, HOU Yurong1,*(
), LAN Jiyong1, KANG Shuai1, JIN Junpeng1
Received:
2021-03-16
Accepted:
2021-05-30
Online:
2021-11-30
Published:
2022-01-30
Contact:
HOU Yurong
About author:
WEI Peng, E-mail: xkyweipeng@163.com
Supported by:
WEI Peng, AN Shazhou, KE Mei, LI Chao, HOU Yurong, LAN Jiyong, KANG Shuai, JIN Junpeng. Effects of Enclosure on Plant and Soil Restoration in the Junggar Desert[J]. Journal of Resources and Ecology, 2021, 12(6): 840-848.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.06.012
Formation type | Plot | Dominant species | Location | MAT (℃) | MAP (mm) | Altitude (m) | |||
---|---|---|---|---|---|---|---|---|---|
Seriphidium transiliense | EN FG | S. transiliense Petrosimonia sibirica Carex turkestanica Ceratocarpus arenarius | 46°58′N, 88°09′E | 6.49 | 114.54 | 1015 | |||
Haloxylon persicum | EN FG | H. persicum, C. arenarius Seriphidium terrae-albae Salsola collina | 44°23′N, 88°08′E | 8.20 | 65.94 | 358 | |||
Anabasis salsa | EN FG | Salsa C. arenarius S. terrae-albae, Salsola arbuscula | 44°01′N, 86°09′E | 4.94 | 166.88 | 667 |
Table 1 Details of experimental sites in the Junggar Basin
Formation type | Plot | Dominant species | Location | MAT (℃) | MAP (mm) | Altitude (m) | |||
---|---|---|---|---|---|---|---|---|---|
Seriphidium transiliense | EN FG | S. transiliense Petrosimonia sibirica Carex turkestanica Ceratocarpus arenarius | 46°58′N, 88°09′E | 6.49 | 114.54 | 1015 | |||
Haloxylon persicum | EN FG | H. persicum, C. arenarius Seriphidium terrae-albae Salsola collina | 44°23′N, 88°08′E | 8.20 | 65.94 | 358 | |||
Anabasis salsa | EN FG | Salsa C. arenarius S. terrae-albae, Salsola arbuscula | 44°01′N, 86°09′E | 4.94 | 166.88 | 667 |
Formation type | SOC | STN | STP |
---|---|---|---|
Seriphidium transiliense | |||
EN | 16.65 ± 0.33a | 1.12 ± 0.03a | 0.49 ± 0.04a |
FG | 18.34 ± 0.64a | 1.31 ± 0.04a | 0.48 ± 0.03a |
Haloxylon persicum | |||
EN | 3.66 ± 0.10a | 0.88 ± 0.02a | 0.33 ± 0.02a |
FG | 3.26 ± 0.09a | 0.82 ± 0.02a | 0.30 ± 0.01a |
Anabasis salsa | |||
EN | 13.44 ± 0.54a | 0.95 ± 0.02a | 0.48 ± 0.03a |
FG | 13.37 ± 0.62a | 0.97 ± 0.03a | 0.47 ± 0.05a |
Table 2 Effects of enclosure on soil nutrients in three desert plant formations (Unit: g kg-1)
Formation type | SOC | STN | STP |
---|---|---|---|
Seriphidium transiliense | |||
EN | 16.65 ± 0.33a | 1.12 ± 0.03a | 0.49 ± 0.04a |
FG | 18.34 ± 0.64a | 1.31 ± 0.04a | 0.48 ± 0.03a |
Haloxylon persicum | |||
EN | 3.66 ± 0.10a | 0.88 ± 0.02a | 0.33 ± 0.02a |
FG | 3.26 ± 0.09a | 0.82 ± 0.02a | 0.30 ± 0.01a |
Anabasis salsa | |||
EN | 13.44 ± 0.54a | 0.95 ± 0.02a | 0.48 ± 0.03a |
FG | 13.37 ± 0.62a | 0.97 ± 0.03a | 0.47 ± 0.05a |
Fig. 1 Effects of enclosure on community characteristics of different desert plant formations. Note: EN: Enclosure plot; FG: Free grazing plot. S. transiliense: Seriphidium transiliense; H. persicum: Haloxylon persicum; A. salsa: Anabasis salsa. * indicates significant difference between plots at P < 0.05.
Fig. 2 Effects of enclosure on the α-diversity of different desert plant formations Note: EN: Enclosure plot; FG: Free grazing plot. S. transiliense: Seriphidium transiliense; H. persicum: Haloxylon persicum; A. salsa: Anabasis salsa. * indicates significant difference between plots at P < 0.05.
Formation type | Plot | Number of OTUs | Chao 1 index | ACE index | Shannon-Wiener index |
---|---|---|---|---|---|
Seriphidium transiliense | EN | 3309.40 ± 267.07a | 3586.51 ± 526.54a | 3770.91 ± 669.77a | 10.56 ± 0.11a |
FG | 2935.40 ± 166.31b | 3214.72 ± 463.41a | 3284.09 ± 478.19a | 10.26 ± 0.15b | |
Haloxylon persicum | EN | 3341.60 ± 172.30a | 3884.64 ± 242.39a | 4229.17 ± 297.79a | 10.41 ± 0.08a |
FG | 2854.20 ± 182.94b | 3328.67 ± 543.53b | 3414.22 ± 558.59b | 10.09 ± 0.14b | |
Anabasissalsa | EN | 3127.80 ± 229.31a | 3692.70 ± 355.15a | 3997.36 ± 424.69a | 10.19 ± 0.29a |
FG | 2917.00 ± 250.42a | 3400.84 ± 554.56a | 3534.98 ± 555.67a | 10.26 ± 0.16a |
Table 3 Response of bacterial diversity to enclosures in three desert plant formations
Formation type | Plot | Number of OTUs | Chao 1 index | ACE index | Shannon-Wiener index |
---|---|---|---|---|---|
Seriphidium transiliense | EN | 3309.40 ± 267.07a | 3586.51 ± 526.54a | 3770.91 ± 669.77a | 10.56 ± 0.11a |
FG | 2935.40 ± 166.31b | 3214.72 ± 463.41a | 3284.09 ± 478.19a | 10.26 ± 0.15b | |
Haloxylon persicum | EN | 3341.60 ± 172.30a | 3884.64 ± 242.39a | 4229.17 ± 297.79a | 10.41 ± 0.08a |
FG | 2854.20 ± 182.94b | 3328.67 ± 543.53b | 3414.22 ± 558.59b | 10.09 ± 0.14b | |
Anabasissalsa | EN | 3127.80 ± 229.31a | 3692.70 ± 355.15a | 3997.36 ± 424.69a | 10.19 ± 0.29a |
FG | 2917.00 ± 250.42a | 3400.84 ± 554.56a | 3534.98 ± 555.67a | 10.26 ± 0.16a |
Fig. 3 Effects of enclosure on bacterial β-diversity under different desert plant formations Note: (a) MN: Seriphidium transiliense formation; (b) FK: Haloxylon persicum formation; (c) FH: Anabasis salsa formation. EN: Enclosure plot; FG: Free grazing plot.
Fig. 4 Effects of enclosure on soil bacterial community structure in different desert plant communities Note: EN: Enclosure plot; FG: Free grazing plot. S. transiliense: Seriphidium transiliense; H. persicum: Haloxylon persicum; A. salsa: Anabasis salsa.
[1] | Bao S D. 2000. Soil and agricultural chemistry analysis (3rd edition). Beijing, China: China Agriculture Press. (in Chinese) |
[2] | China Vegetation Map Committee of Chinese Academy of Sciences. 2007. 1/1000000 Vegetation map of the People’s Republic of China. Beijing, China: Geological Publishing House. (in Chinese) |
[3] | Dong Y Q, Sun Z J, An S Z, et al. 2018. Effect of short-term grazing exclusion on community characteristics and stability in Artemisia desert on the northern slopes of the Tianshan Mountains. Pratacultural Science, 35(5): 996-1003. (in Chinese) |
[4] | Gao Y H. 2007. Study on carbon and nitrogen distribution pattern and cyeling proeessinan alpine meadow ecosystem under different grazing intensity. Diss., Chengdu, China: University of Chinese Academy of Sciences.. (in Chinese) |
[5] |
Guo Q F. 2007. The diversity-biomass-productivity relationships in grassland management and restoration. Basic and Applied Ecology, 8(3): 199-208.
DOI URL |
[6] |
Guo Y J, Du Q F, Li G D, et al. 2016. Soil phosphorus fractions and arbuscular mycorrhizal fungi diversity following long-term grazing exclusion on semi-arid steppes in Inner Mongolia. Geoderma, 269: 79-90.
DOI URL |
[7] | Jeddi K, Chaieb M. 2010. Changes in soil properties and vegetation following livestock grazing exclusion in degraded arid environments of South Tunisia. Flora—Morphology, Distribution, Functional Ecology of Plants, 205(3): 184-189. |
[8] |
Jing Z B, Cheng J M, Su J S, et al. 2014. Changes in plant community composition and soil properties under 3-decade grazing exclusion in semi-arid grassland. Ecological Engineering, 64(3): 171-178.
DOI URL |
[9] | Li W. 2016. Effects of grazing management regime on vegetation characters, soil dynamics, carbon and nitrogen storage in alpine meadow of Qinghai-Tibetan Plateau. Diss., Lanzhou, China: Gansu Agricultural University.. (in Chinese) |
[10] |
Liang M W, Chen J Q, Smith N G, et al. 2019. Changes and regulations of net ecosystem CO2 exchange across temporal scales in the Alxa Desert. Journal of Arid Environments, 164(5): 78-84.
DOI URL |
[11] |
Semmartin M, Garibaldi L A, Chaneton E J. 2008. Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant and Soil, 303(1-2): 177-189.
DOI URL |
[12] |
Shaltout K H, El-Halawany E F, El-Kady H F. 1996. Consequences of protection from grazing on diversity and abundance of the coastal lowland vegetation in eastern Saudi Arabia. Biodiversity and Conservation, 5(1): 27-36.
DOI URL |
[13] |
Shi X M, Li X G, Li C T, et al. 2013. Grazing exclusion decreases soil organic C storage at an alpine grassland of the Qinghai-Tibetan Plateau. Ecological Engineering, 57(3): 183-187.
DOI URL |
[14] |
Sigcha F, Pallavicini Y, Camino M J, et al. 2018. Effects of short-term grazing exclusion on vegetation and soil in early succession of a subhumid Mediterranean reclaimed coal mine. Plant and Soil, 426(1-2): 197-209.
DOI URL |
[15] | Taddese G, Saleem M, Abyie A. 2002. Impact of grazing on plant species richness, plant biomass, plant attribute, and soil physical and hydrological |
a)properties of vertisol in East African highlands.. Environmental Management, 29(2): 279-289. | |
[2] | Wang X B. 2015. The spatial pattern of soil microbial communities and its driving mechanism in the grassland of Northern China. Diss., Beijing, China: Chinese Academy of Sciences. (in Chinese) |
[3] | Wei P, An S Z, Dong Y Q, et al. 2020. A high-throughput sequencing evaluation of bacterial diversity and community structure of desert soil in the Junggar Basin. Acta Prataculturae Sinica, 29: 182-90. (in Chinese) |
[4] | Xinjiang Comprehensive Investigation Team, The Chinese Academy of Sciences. 1978. Vegetation and utilization in Xinjiang. Beijing, China: Science Press. (in Chinese) |
[5] |
Xiong D P, Shi P L, Sun Y L, et al. 2014. Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in alpine meadows in northern Tibet, China. Chinese Geographical Science, 24(4): 488-498.
DOI URL |
[6] | Xu P. 1993. Grassland resources and their utilization in Xinjiang. Urumqi, China: Xinjiang Science and Technology and Health Publishing House, 17-19. (in Chinese) |
[7] | Xun Q L. 2017. Above-ground biomass model estimation based on modis and meteorological data in Xinjiang grassland. Diss., Urumqi, China: Xinjiang Agricultural University. (in Chinese) |
[8] | Yang H L, Sun Z J, Chen Y P. 2015. Effects of enclosure years on the grassland community characteristics and pasture mass index of Seriphidium Transiliense desert grassland. Acta Agrestia Sinica, 23(2): 252-257. (in Chinese) |
[9] | Yang J. 2017. Effects of enclosure on characteristics of vegetation and soil organic carbon, nitrogen fractions in sandy desert grassland. Diss., Urumqi, China: Xinjiang Agricultural University. (in Chinese) |
[10] |
Yin Y L, Wang Y Q, Li S X, et al. 2019. Effects of enclosing on soil microbial community diversity and soil stoichiometric characteristics in a degraded alpine meadow. Chinese Journal of Applied Ecology, 30(1): 127-136. (in Chinese)
DOI PMID |
[11] |
Yu Q, Chen Q S, Elser J J, et al. 2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13(11): 1390-1399.
DOI URL |
[12] | Zhang L. 2019. Mechanism of the effects of typical temperate desert plant diversity on ecosystem function. Diss., Urumqi, China: Xinjiang University. (in Chinese) |
[13] | Zhang Y J. 2010. Study on the change of artemisia grassland community and adaptability of Seriphidium transiliense under enclosure. Diss., Urumqi, China: Xinjiang Agricultural University. (in Chinese) |
[14] |
Zhou J Z, Bruns M A, Tiedje J M. 1996. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62(2): 316-322.
DOI PMID |
[1] | LI Qingnan, LIANG Yinghui, MU Dan, YAO Dandan. Diversity of Plant Resources in Qunli National Urban Wetland Park in Harbin, China [J]. Journal of Resources and Ecology, 2021, 12(6): 822-828. |
[2] | MA Nan, YANG Lun, MIN Qingwen, BAI Keyu, LI Wenhua. The Significance of Traditional Culture for Agricultural Biodiversity—Experiences from GIAHS [J]. Journal of Resources and Ecology, 2021, 12(4): 453-461. |
[3] | NAGATA Akira, YIU Evonne. Ten Years of GIAHS Development in Japan [J]. Journal of Resources and Ecology, 2021, 12(4): 567-577. |
[4] | ZHANG Zihao, HOU Jihua, HE Nianpeng. Predictability of Functional Diversity Depends on the Number of Traits [J]. Journal of Resources and Ecology, 2021, 12(3): 332-345. |
[5] | Hari Prasad PANDEY. Implications of Anthropogenic Disturbances for Species Diversity, Recruitment and Carbon Density in the Mid-hills Forests of Nepal [J]. Journal of Resources and Ecology, 2021, 12(1): 1-10. |
[6] | LI Chao, XU Wenli, LI Qingkang, WANG Jingsheng. Community Structure and Diversity Distribution Pattern of Sandy Plants in the Middle and Upper Reaches of the Yarlung Zangbo River [J]. Journal of Resources and Ecology, 2021, 12(1): 11-21. |
[7] | WANG Yang, YUE Dan, LI Xinzhi. Genetic Diversity of Toona ciliata Populations based on SSR Markers [J]. Journal of Resources and Ecology, 2020, 11(5): 466-474. |
[8] | WANG Yang, JIANG Xiongbo, WU Dezhi. Species Diversity Characteristics of a Natural Pinus taiwanensis Community with Different Diameter Classes and Forest Densities [J]. Journal of Resources and Ecology, 2020, 11(4): 349-357. |
[9] | WANG Fang, HE Yongtao, FU Gang, NIU Ben, ZHANG Haorui, LI Meng, WANG Zhipeng, WANG Xiangtao, ZHANG Xianzhou. Effects of Enclosure on Plant and Soil Nutrients in Different Types of Alpine Grassland [J]. Journal of Resources and Ecology, 2020, 11(3): 290-297. |
[10] | WANG Tong,WANG Jingsheng,DING Yuke,LIU Wenjing,BAO Xiaoting,LI Chao. Quantitative Classification and Ordination of Plant Communities in the Upper and Middle Reaches of the Yarlung Zangbo River Basin [J]. Journal of Resources and Ecology, 2019, 10(4): 389-396. |
[11] | WANG Shaoqiang,WANG Junbang,ZHANG Leiming,XIAO Zhishu,WANG Feng,SUN Nan,LI Daiqing,CHEN Bin,CHEN Jinghua,LI Yue,WANG Xiaobo,WANG Miaomiao. A National Key R&D Program: Technologies and Guidelines for Monitoring Ecological Quality of Terrestrial Ecosystems in China [J]. Journal of Resources and Ecology, 2019, 10(2): 105-111. |
[12] | DU Wei,WU Shanmei,NIE Cheng,LI Yue,SHAO Rui,LIU Yinghui,SUN Nan. Soil Respiration Dynamics and Influencing Factors in Typical Steppe of Inner Mongolia under Long-term Nitrogen Addition [J]. Journal of Resources and Ecology, 2019, 10(2): 155-162. |
[13] | CHEN Xiaopeng, CHENG Shengkui, WU Liang. Quantitative Analysis of Central Asian Countries’ Energy Security and Its Political Influence Factors [J]. Journal of Resources and Ecology, 2018, 9(4): 434-443. |
[14] | PENG Zongbo, JIANG Ying. Density Dependence of a Dominant Species and the Effects on Community Diversity Maintainance [J]. Journal of Resources and Ecology, 2016, 7(4): 275-280. |
[15] | KUSUMOTO Yoshinobu, INAGAKI Hidehiro. Symbiosis of Biodiversity and Tea Production Through Chagusaba [J]. Journal of Resources and Ecology, 2016, 7(3): 151-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||