Journal of Resources and Ecology ›› 2019, Vol. 10 ›› Issue (4): 397-414.doi: 10.5814/j.issn.1674-764X.2019.04.007
• Resources and Ecology in the Qinghai-Tibet Plateau • Previous Articles Next Articles
Received:
2018-12-13
Accepted:
2019-03-18
Online:
2019-07-30
Published:
2019-07-30
Contact:
ZHOU Yuke
E-mail:zhouyk@igsnrr.ac.cn
About author:
First author: WANG Tong, E-mail:
Supported by:
ZHOU Yuke. Characterizing the Spatio-temporal Dynamics and Variability in Climate Extremes over the Tibetan Plateau during 1960-2012[J].Journal of Resources and Ecology, 2019, 10(4): 397-414.
Table 1
Codes and interpretations for the seven eco- geographical regions"
Region Code | Interpretation |
---|---|
HIIAB | Temperate, humid or semi-humid zone |
HIIC | Temperate, semi-arid zone |
HIID | Temperate, arid zone |
HIB | Sub frigid, semi-humid zone |
HIC | Sub frigid, semi-arid zone |
HID | Frigid, arid zone |
VA | Mid subtropical, humid zone |
Table 2
Definitions of the climate extreme indices (CEIs)"
Name* | Descriptive name | Definition | Units |
---|---|---|---|
TN10p | Cold nights | Percentage of days when TN < 10th percentile | d |
TN90p | Warm nights | Percentage of days when TN > 90th percentile | d |
TX10p | Cold days | Percentage of days when TX < 10th percentile | d |
TX90p | Warm days | Percentage of days when TX > 90th percentile | d |
CSDI | Cold spell duration indicator | Annual count of days with at least 6 consecutive days when TN < 10th percentile | d |
WSDI | Warm spell duration indicator | Annual count of days with at least 6 consecutive days when TX > 90th percentile | d |
FD0 | Frost days | Annual count of days when TN < 0℃ | d |
ID0 | Ice days | Annual count of days when TX < 0℃ | d |
SU25 | Summer days | Annual count of days when TX (daily maximum) > 25℃ | d |
GSL | Growing season Length | Annual (1st Jan to 31st Dec in NH, 1st July to 30th June in SH) count between first span of at least 6 days with mean temperature > 5℃ and first span after July 1 (January 1 in SH) of 6 days with mean temperature < 5℃ | d |
TNn | Min Tmin | Monthly minimum value of daily minimum temp | ℃ |
TNx | Max Tmin | Monthly maximum value of daily minimum temp | ℃ |
TXn | Min Tmax | Monthly minimum value of daily maximum temp | ℃ |
TXx | Max Tmax | Monthly maximum value of daily maximum temp | ℃ |
TMAXmean | Mean of maximum value of daily average temperature | ℃ | |
TMINmean | Mean of minimum value of daily average temperature | ℃ | |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days (defined as PRCP ≥ 1.0 mm) in the year | Mm d?1 |
R10p | Number of heavy precipitation days | Annual count of days when precipitation ≥10 mm | d |
CWD | Consecutive wet days | The longest span of consecutive days when daily precipitation < 1mm | d |
CDD | Consecutive dry days | The longest span of consecutive days when daily precipitation > 1mm | d |
R95p | Very wet days | Annual total precipitation when precipitation > 95th percentile | mm |
RX5day | Max 5-day precipitation amount | Monthly maximum precipitation for a continuous 5d span | mm |
RX1day | Max 1-day precipitation amount | Monthly maximum 1-day precipitation | mm |
PRCPTOT | Annual total wet-day precipitation | Annual total precipitation in wet days (precipitation ≥ 1mm) | mm |
Table 3
Theil-Sen trends and MK-test values for temperature extreme indices"
Trend\Indices | TN10p | TN90p | CSDI | TX10p | TX90p | WSDI | FD0 | SU25 | GSL | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Theil-Sen Slope | -1.726** | 1.025** | -0.108** | -0.800** | 0.568** | 0.080** | -0.504** | 0.093** | 0.528** | |||||||
Kendall’s tau | -0.885** | 0.749** | -0.762** | -0.562** | 0.443** | 0.478** | -0.702** | 0.457** | 0.636** | |||||||
Trend\Indices | ID | TMAXmean | TMINmean | TNn | TNx | TXn | TXx | |||||||||
Theil-Sen Slope | -0.334** | 0.031** | 0.051** | 0.079** | 0.027** | 0.043** | 0.027** | |||||||||
Kendall’s tau | -0.655** | 0.508** | 0.811** | 0.852** | 0.61** | 0.473** | 0.493** |
Table A1
Meta information for the meteorological stations used in the study, including the World Meteorological Organization (WMO) Number, Latitude, Longitude, Elevation, Location, province, start date, end date and data missing period (1960-2012)"
Station number | Lat (N) | Long (E) | Elev (m) | Location | Province | Start date | End date | Missing data period |
---|---|---|---|---|---|---|---|---|
51804 | 37.76667 | 75.23333 | 3090.1 | Taxkorgan | Xinjiang | 195701 | 201412 | |
51886 | 38.25 | 90.85 | 2944.8 | Mangya | Qinghai | 195809 | 201412 | |
52602 | 38.75 | 93.33333 | 2770 | Lenghu | Qinghai | 195609 | 201412 | |
52633 | 38.8 | 98.41667 | 3367 | Tuole | Qinghai | 195611 | 201412 | |
52645 | 38.41667 | 99.58333 | 3320 | Yeniugou | Qinghai | 195902 | 201412 | |
52657 | 38.18333 | 100.25 | 2787.4 | Qilian | Qinghai | 195605 | 201412 | |
52707 | 36.8 | 93.68333 | 2767 | Xiaozhaohuo | Qinghai | 196006 | 201412 | 1974.04-1974.12 |
52713 | 37.85 | 95.36667 | 3173.2 | Dacaidan | Qinghai | 195605 | 201412 | |
52737 | 37.36667 | 97.36667 | 2981.5 | Delingha | Qinghai | 195508 | 201412 | |
52754 | 37.33333 | 100.1333 | 3301.5 | Gangcha | Qinghai | 195707 | 201412 | |
52765 | 37.38333 | 101.6167 | 2850 | Menyuan | Qinghai | 195610 | 201412 | |
52787 | 37.2 | 102.8667 | 3045.1 | Wuqiaoling | Qinghai | 195101 | 201412 | |
52818 | 36.41667 | 94.9 | 2807.6 | Golmud | Qinghai | 195504 | 201412 | |
52825 | 36.43333 | 96.41667 | 2790.4 | Nomhon | Qinghai | 195606 | 201412 | |
52833 | 36.91667 | 98.48333 | 2950 | Ulan | Qinghai | 198008 | 201412 | |
52836 | 36.3 | 98.1 | 3191.1 | Dulan | Qinghai | 195401 | 201412 | |
52842 | 36.78333 | 99.08333 | 3087.6 | Caka | Qinghai | 195506 | 201412 | |
Station number | Lat (N) | Long (E) | Elev (m) | Location | Province | Start date | End date | Missing data period |
52856 | 36.26667 | 100.6167 | 2835 | Qboqia | Qinghai | 195301 | 201412 | |
52866 | 36.71667 | 101.75 | 2295.2 | Xining | Qinghai | 195401 | 201412 | |
52868 | 36.03333 | 101.4333 | 2237.1 | Guizhou | Qinghai | 195611 | 201412 | |
52908 | 35.21667 | 93.08333 | 4612.2 | Wudaoliang | Qinghai | 195610 | 201412 | |
52943 | 35.58333 | 99.98333 | 3323.2 | Xinghai | Qinghai | 196001 | 201412 | |
52955 | 35.58333 | 100.75 | 3120 | Guinan | Qinghai | 195701 | 201412 | |
52974 | 35.51667 | 102.0167 | 2491.4 | Tongren | Qinghai | 195712 | 201412 | |
55228 | 32.5 | 80.08333 | 4278.6 | Shiquanhe | Tibet | 196101 | 201412 | |
55248 | 32.15 | 84.41667 | 4414.9 | Gaize | Tibet | 197301 | 201412 | |
55279 | 31.38333 | 90.01667 | 4700 | Bange | Tibet | 195610 | 201412 | 1965.04 |
55294 | 32.35 | 91.1 | 4800 | Anduo | Tibet | 196511 | 201412 | |
55437 | 30.28333 | 81.25 | 4900 | Pulan | Tibet | 197301 | 201412 | |
55472 | 30.95 | 88.63333 | 4672 | Shenzha | Tibet | 196004 | 201412 | |
55493 | 30.48333 | 91.1 | 4200 | Dangxiong | Tibet | 196208 | 201412 | |
55569 | 29.08333 | 87.6 | 4000 | Lazi | Tibet | 197707 | 201412 | |
55572 | 29.68333 | 89.1 | 4000 | Nanmulin | Tibet | 196001 | 201412 | |
55578 | 29.25 | 88.88333 | 3836 | Shigatse | Tibet | 195512 | 201412 | |
55585 | 29.43333 | 90.16667 | 3809.4 | Nimu | Tibet | 197307 | 201412 | |
55589 | 29.3 | 90.98333 | 3555.3 | Gongga | Tibet | 196101 | 201412 | |
55591 | 29.66667 | 91.13333 | 3648.9 | Lhasa | Tibet | 195501 | 201412 | 1968.06-1968.10 |
55593 | 29.85 | 91.73333 | 3804.3 | Mozhuongka | Tibet | 197301 | 201412 | |
55597 | 29.03333 | 91.68333 | 3741 | Qiongjie | Tibet | 195803 | 201412 | |
55598 | 29.25 | 91.76667 | 3551.7 | Zeeang | Tibet | 195609 | 201412 | |
55655 | 28.18333 | 85.96667 | 3810 | Nielaer | Tibet | 196607 | 201412 | |
55664 | 28.63333 | 87.08333 | 4300 | Dingri | Tibet | 195901 | 201412 | 1968.11-1969.01, 1969.08-1970.09 |
55680 | 28.91667 | 89.6 | 4040 | Jiangzi | Tibet | 195611 | 201412 | |
55681 | 28.96667 | 90.4 | 4432.4 | Langkazi | Tibet | 195801 | 201412 | |
55690 | 27.98333 | 91.95 | 4280.3 | Cuona | Tibet | 196701 | 201412 | |
55696 | 28.41667 | 92.46667 | 3860 | Longzi | Tibet | 195907 | 201412 | |
55773 | 27.73333 | 89.08333 | 4300 | Pali | Tibet | 195602 | 201412 | |
56004 | 34.21667 | 92.43333 | 4533.1 | Tuotuohe | Qinghai | 195610 | 201412 | |
56018 | 32.9 | 95.3 | 4066.4 | Zaduo | Qinghai | 195610 | 201412 | |
56021 | 34.13333 | 95.78333 | 4175 | Qumalai | Qinghai | 195607 | 201412 | 1962.08-1962.12 |
56029 | 33.01667 | 97.01667 | 3681.2 | Yushu | Qinghai | 195110 | 201412 | |
56033 | 34.91667 | 98.21667 | 4272.3 | Maduo | Qinghai | 195301 | 201412 | |
56034 | 33.8 | 97.13333 | 4415.4 | Qingshuihe | Qinghai | 195609 | 201412 | |
56038 | 32.98333 | 98.1 | 4200 | Shiqu | Sichuan | 196010 | 201412 | |
56041 | 34.26667 | 99.2 | 4211.1 | Zhongxinzhan | Qinghai | 195909 | 201412 | |
56043 | 34.46667 | 100.25 | 3719 | Guoluo | Qinghai | 199101 | 201412 | |
56046 | 33.75 | 99.65 | 3967.5 | Dari | Qinghai | 195601 | 201412 | |
56065 | 34.73333 | 101.6 | 3500 | Henan | Qinghai | 195905 | 201412 | |
56067 | 33.43333 | 101.4833 | 3628.5 | Jiuzhi | Qinghai | 195812 | 201412 | 1962.04-1962.05 |
56074 | 34 | 102.0833 | 3471.4 | Maqu | Gansu | 196701 | 201412 | |
56075 | 34.08333 | 102.6333 | 3362.7 | Langmushi | Gansu | 195701 | 201412 | |
56079 | 33.58333 | 102.9667 | 3439.6 | Ruoergai | Sichuan | 195701 | 201412 | |
56080 | 35 | 102.9 | 2910 | Hezuo | Gansu | 195707 | 201412 | |
Station number | Lat (N) | Long (E) | Elev (m) | Location | Province | Start date | End date | Missing data period |
56106 | 31.88333 | 93.78333 | 4022.8 | Suoxian | Tibet | 195611 | 201412 | |
56109 | 31.48333 | 93.78333 | 3940 | Biru | Tibet | 196201 | 201412 | |
56116 | 31.41667 | 95.6 | 3873.1 | Dingqing | Tibet | 195401 | 201412 | 1969.06-1969.08 |
56125 | 32.2 | 96.48333 | 3643.7 | Nangqian | Qinghai | 195606 | 201412 | |
56128 | 31.21667 | 96.6 | 3810 | Leiwuqi | Tibet | 197101 | 201412 | |
56132 | 32.46667 | 98 | 3242.1 | Shiquluoxu | Sichuan | 196001 | 201412 | |
56137 | 31.15 | 97.16667 | 3306 | Changdu | Tibet | 195401 | 201412 | |
56144 | 31.8 | 98.58333 | 3184 | Dege | Sichuan | 195612 | 201412 | |
56146 | 31.61667 | 100 | 3393.5 | Ganzi | Sichuan | 195101 | 201412 | |
56151 | 32.93333 | 100.75 | 3530 | Banma | Qinghai | 196002 | 201412 | 1962.04-1965.04 |
56152 | 32.28333 | 100.3333 | 3893.9 | Seda | Sichuan | 196101 | 201412 | |
56167 | 30.98333 | 101.1167 | 2957.2 | Daofu | Sichuan | 195702 | 201412 | |
56172 | 31.9 | 102.2333 | 2664.4 | Maerkang | Sichuan | 195304 | 201412 | |
56173 | 32.8 | 102.55 | 3491.6 | Hongyuan | Sichuan | 196005 | 201412 | |
56178 | 31 | 102.35 | 2369.2 | Xiaojin | Sichuan | 195112 | 201412 | |
56182 | 32.65 | 103.5667 | 2850.7 | Songpan | Sichuan | 195101 | 201412 | |
56202 | 30.66667 | 93.28333 | 4488.8 | Jiali | Tibet | 195411 | 201412 | 1957.07-1960.12 |
56223 | 30.75 | 95.83333 | 3640 | Luolong | Tibet | 196201 | 201412 | |
56227 | 29.86667 | 95.76667 | 2736 | Bomi | Tibet | 195501 | 201412 | 1956.11, 195706-196012 |
56228 | 30.05 | 96.91667 | 3260 | Basu | Tibet | 195901 | 201412 | |
56247 | 30 | 99.1 | 2589.2 | Batang | Sichuan | 195209 | 201412 | 1968.05-1968.12 |
56251 | 30.93333 | 100.3167 | 3000 | Xinlong | Sichuan | 195910 | 201412 | |
56257 | 30 | 100.2667 | 3948.9 | Litang | Sichuan | 195205 | 201412 | 196709, 1968.01-1968.07, 1969.05-1969.08 |
56265 | 30.48333 | 101.4833 | 3449 | Ganning | Sichuan | 195207 | 201412 | 1968.04-1968.08, 1969.08 |
56307 | 29.15 | 92.58333 | 3260 | Jiacha | Tibet | 199101 | 201412 | |
56312 | 29.66667 | 94.33333 | 2991.8 | Linzhi | Tibet | 195401 | 201412 | |
56317 | 29.21667 | 94.21667 | 2950 | Milin | Tibet | 196201 | 201412 | |
56331 | 29.66667 | 97.83333 | 3780 | Zuogong | Tibet | 197801 | 201412 | |
56342 | 29.68333 | 98.6 | 3870 | Mangkang | Tibet | 197201 | 201412 | |
56357 | 29.05 | 100.3 | 3727.7 | Daocheng | Sichuan | 195701 | 201412 | 1968.05 |
56374 | 30.05 | 101.9667 | 2615.7 | Kangding | Sichuan | 195111 | 201412 | |
56434 | 28.65 | 97.46667 | 2327.6 | Chayu | Tibet | 196902 | 201412 | |
56444 | 28.48333 | 98.91667 | 3319 | Deqin | Yunnan | 195308 | 201412 | |
56462 | 29 | 101.5 | 2987.3 | Jiulong | Sichuan | 195207 | 201412 | |
56543 | 27.83333 | 99.7 | 3276.7 | Zhongdian | Yunnan | 195801 | 201412 |
[1] | Adger W N, Barnett J.2009. Four reasons for concern about adaptation to climate change.Environment and Planning A, 41(12): 2800-2805. |
[2] | Alexander L, Zhang X, Peterson T, et al.2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D05109). doi:10.1029/2005 JD006290 |
[3] | An W, Hou S, Zhang W, et al.2016. Significant recent warming over the northern Tibetan Plateau from ice core δ18 o records. Climate of the Past, 11(4): 2701-2728. |
[4] | Brunner L, Hegerl G C, Steiner A K.2017. Connecting atmospheric blocking to european temperature extremes in spring.Journal of Climate, 30(2): 585-594. |
[5] | China Meteorological Administration.2003. Surface Weather Observation Standards. Beijing: China Meteorological Press, 54-59. |
[6] | China Meteorological Administration.2005. Compilation of 30-year Conventional Surface Climate Data and Their Statistics (QX/T22-2004). Beijing: Standards Press of China. (in Chinese) |
[7] | Dong B, Sutton R T, Shaffrey L.2017. Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over western Europe.Climate Dynamics, 48(5-6): 1537-1554. |
[8] | Duan J, Li L, Fang Y.2015. Seasonal spatial heterogeneity of warming rates on the Tibetan Plateau over the past 30 years.Scientific Reports, 5(1): 11725. |
[9] | Flato G, Marotzke J, Abiodun B, et al.2013. Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group i to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 741-866. |
[10] | Foley J A, DeFries R, Asner G P, et al.2005. Global consequences of landuse.Science, 309(5734): 570-574. |
[11] | Grimm N B, Faeth S H, Golubiewski N E, et al.2008. Global change and the ecology of cities.Science, 319(5864): 756-760. |
[12] | Guo D, Wang H.2012. The significant climate warming in the northern Tibetan Plateau and its possible causes.International Journal of Climatology, 32(12): 1775-1781. |
[13] | Hamed K H.2008. Trend detection in hydrologic data: The mann-kendall trend test under the scaling hypothesis.Journal of Hydrology, 349(3-4): 350-363. |
[14] | Herold N, Behrangi A, Alexander L V.2017. Large uncertainties in observed daily precipitation extremes over land.Journal of Geophysical Research: Atmospheres, 122(2): 668-681. |
[15] | Hurst H E.1951. Long term storage capacity of reservoirs.Transactions of the American Society of Civil Engineers, 116: 776-808. |
[16] | Jun D.2001. Change of temperature in Tibetan Plateau from 1961 to 2000. Acta Geographica Sinica, 56(33): 232-239. (in Chinese) |
[17] | Katz R W, Brown B G.1992. Extreme events in a changing climate: Variability is more important than averages.Climatic Change, 21(3): 289-302. |
[18] | Konisky D M, Hughes L, Kaylor C H.2016. Extreme weather events and climate change concern. Climatic Change, 134(4): 533-547. |
[19] | Li Q, Dong W, Li W, et al.2010. Assessment of the uncertainties in temperature change in China during the last century. Chinese Science Bulletin, 55(19): 1974-1982. |
[20] | Li Q, Zhang L, Xu W, et al.2017. Comparisons of time series of annual mean surface air temperature for China since the 1900s: Observations, model simulations, and extended reanalysis. Bulletin of the American Meteorological Society, 98(4): 699-711. |
[21] | Li Z, Yan Z.2009. Homogenized daily mean/maximum/minimum temperature series for China from 1960-2008.Atmospheric and Oceanic Science Letters, 2(4): 237-243. |
[22] | Lin Z, Zhao X.1996. Spatial characteristics of changes in temperature and precipitation of the Qinghai-Xizang (Tibet) Plateau.Science in China Series D: Earth Sciences, 39(4): 442-448. |
[23] | Liu J, Liu M, Zhuang D, et al.2003. Study on spatial pattern of land-use change in China during 1995-2000.Science in China Series D: Earth Sciences, 46(4): 373-384. |
[24] | Liu J, Zhang Z, Xu X, et al.2010. Spatial patterns and driving forces of land use change in China during the early 21st century.Journal of Geographical Sciences, 20(4): 483-494. |
[25] | Liu X, Chen B.2000. Climatic warming in the Tibetan Plateau during recent decades.International Journal of Climatology, 20(14): 1729-1742. |
[26] | Liu X, Yin Z Y, Shao X, et al.2006. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central tibetan plateau during 1961-2003. Journal of Geophysical Research: Atmospheres, 111(D19). |
[27] | Lu N, Trenberth K E, Qin J, et al.2015. Detecting long-term trends in precipitable water over the Tibetan Plateau by synthesis of station and modis observations.Journal of Climate, 28(4): 1707-1722. |
[28] | Luo S, Fang X, Lyu S, et al.2016. Frozen ground temperature trends associated with climate change in the Tibetan Plateau three river source region from 1980 to 2014.Climate Research, 67(3): 241-255. |
[29] | O’Connell P, Koutsoyiannis D, Lins H, et al.2016. The scientific legacy of harold edwin hurst (1880-1978).Hydrological Sciences Journal, 61(9): 1571-1590. |
[30] | Pettitt A.1979. A non-parametric approach to the change-point problem.Applied Statistics, 28(2): 126-135. |
[31] | Piao S, Fang J, He J.2006. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999.Climatic Change, 74(1-3): 253-267. |
[32] | Reid P C, Hari R E, Beaugrand G, et al.2016. Global impacts of the 1980s regime shift. Global Change Biology, 22(2): 682-703. |
[33] | Shen M, Piao S, Chen X, et al.2016. Strong impacts of daily minimum temperature on the green‐update and summer greenness of the Tibetan Plateau.Global Change Biology, 22(9): 3057-3066. |
[34] | Shen M, Piao S, Jeong S J, et al.2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth.Proceedings of the National Academy of Sciences, 112(30): 9299-9304. |
[35] | Song C, Pei T, Zhou C.2014. The role of changing multiscale temperature variability in extreme temperature events on the eastern and central Tibetan Plateau during 1960-2008.International journal of climatology, 34(14): 3683-3701. |
[36] | Stocker T F, Qin D, Plattner G, et al.2013. Contribution of Working Group i to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013: the Physical Science Basis 2013. |
[37] | Tan J, Piao S, Chen A, et al.2015. Seasonally different response of photosynthetic activity to daytime and night-time warming in the northern hemisphere.Global Change Biology, 21(1): 377-387. |
[38] | Tangang F, Juneng L, Aldrian E.2017. Observed changes in extreme temperature and precipitation over indonesia.International Journal of Climatology, 37(4): 1979-1997. |
[39] | Tao F, Xiao D, Zhang S, et al.2017. Wheat yield benefited from increases in minimum temperature in the huang-huai-hai plain of China in the past three decades.Agricultural and Forest Meteorology, 239: 1-14. |
[40] | Tegos A, Tyralis H, Koutsoyiannis D, et al.2017. An R function for the estimation of trend significance under the scaling hypothesis-application in pet parametric annual time series.Open Water Journal, 4(1): 6. |
[41] | Ummenhofer C C, Meehl G A.2017. Extreme weather and climate events with ecological relevance: A review.Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1723): 20160135. |
[42] | Wang B, Bao Q, Hoskins B, et al.2008. Tibetan Plateau warming and precipitation changes in east Asia. Geophysical Research Letters, 35(1 L14702). doi:10.1029/2008GL034330 |
[43] | Weron R.2002. Estimating long-range dependence: Finite sample properties and confidence intervals.Physica A: Statistical Mechanics and its Applications, 312(1-2): 285-299. |
[44] | Wu S, Yang Q, Zheng D.2003. Delineation of eco-geographic regional system of China.Journal of Geographical Sciences, 13(3): 309-315. |
[45] | Xiao C, Wu P, Zhang L, et al.2016. Robust increase in extreme summer rainfall intensity during the past four decades observed in China.Scientific reports, 6: 38506. |
[46] | Yang B, He M, Shishov V, et al.2017. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data.Proceedings of the National Academy of Sciences, 114(27): 6966-6971. |
[47] | Yang K, Wu H, Qin J, et al.2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review.Global and Planetary Change, 112: 79-91. |
[48] | Yang K, Ye B, Zhou D, et al.2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau.Climatic Change, 109(3-4): 517-534. |
[49] | You Q, Kang S, Aguilar E, et al.2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005 . Journal of Geophysical Research: Atmospheres,113(D7). doi: 10.1029/2007JD009 389 |
[50] | You Q, Kang S, Pepin N, et al.2008. Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961-2005. Geophysical Research Letters, 35(4). doi: 10.1029/2007gl032669 |
[51] | Zhang G, Zhang Y, Dong J, et al.2013. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011.Proceedings of the National Academy of Sciences of the USA, 110(11): 4309-4314. |
[52] | Zhang X L, Wang S J, Zhang J M, et al.2015. Temporal and spatial variability in precipitation trends in the southeast Tibetan Plateau during 1961-2012.Climate of the Past Discussions, 11(1): 447-487. |
[53] | Zhang X, Yang F.2004. Rclimdex (1.0) User Manual. Climate Research Branch Environment Canada, 22. |
[54] | Zhang Y, Li B, Zheng D.2014. Datasets of the boundary and area of the Tibetan Plateau. Global Change Research Data Publishing and Repository, doi: 10.3974/geodb. 2014.01. 12. v1. (in Chinese) |
[55] | Zhu Z, Piao S, Myneni R B, et al.2016. Greening of the earth and its drivers.Nature Climate Change, 6(8): 791-795. |
[56] | Zwiers F W, Alexander L V, Hegerl G C, et al.2013. Climate Extremes: Challenges in Estimating and Understanding Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events. In Climate Science for Serving Society, Dordrecht: Springer, 339-389. |
[1] | LIANG Yuting, HU Yunfeng, HAN Yueqi. Spatial Distribution and Dynamic Changes in Research Hotspots for Desertification in China based on Big Data from CNKI [J]. Journal of Resources and Ecology, 2019, 10(6): 692-703. |
[2] | SONG Shuai, LI Fadong, LU Yonglong, Kifayatullah Khan, XUE Jianfang, LENG Peifang. Spatio-temporal Characteristics of the Extreme Climate Events and Their Potential Effects on Crop Yield in Ethiopia [J]. Journal of Resources and Ecology, 2018, 9(3): 290-301. |