Journal of Resources and Ecology ›› 2019, Vol. 10 ›› Issue (2): 213-224.DOI: 10.5814/j.issn.1674-764X.2019.02.012
• Ecosystem Monitoring and Service • Previous Articles Next Articles
CUI Mingyue1,2, WANG Junbang2,3,*(), WANG Shaoqiang2,4, YAN Hao5, LI Yingnian3
Received:
2018-12-20
Accepted:
2019-01-22
Online:
2019-03-30
Published:
2019-03-30
Contact:
WANG Junbang
Supported by:
CUI Mingyue,WANG Junbang,WANG Shaoqiang,YAN Hao,LI Yingnian. Temporal and Spatial Distribution of Evapotranspiration and Its Influencing Factors on Qinghai-Tibet Plateau from 1982 to 2014[J]. Journal of Resources and Ecology, 2019, 10(2): 213-224.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764X.2019.02.012
Fig. 2 Interannual variations of precipitation (a), temperature (b), radiation (c), LAI (d), and ET (e), and percentage of interannual anomaly (f) over the Qinghai-Tibet Plateau from 1982 to 2014.
Fig. 8 Interannual and seasonal variations of actual evapotranspiration of grasslands with different coverage in the Qinghai-Tibet Plateau from 1982 to 2014
[1] | Bonan G B.2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests.Science, 320(5882): 1444-1449. |
[2] | Bonan G B.2014. Connecting mathematical ecosystems, real-world ecosystems, and climate science.New Phytologist, 202(3): 731-733. |
[3] | Brutsaert W.2005. Hydrology: An Introduction. New York: Cambridge University Press. |
[4] | Chen Z Q, Shao Q Q, Liu J Y, et al.2012. Analysis of net primary productivity of terrestrial vegetation on the Qinghai-Tibet Plateau,based on MODIS remote sensing data.Science China Earth Sciences, 55(8): 1306-1312. |
[5] | Deng H, Shao J A.2018. Evapotranspiration and humidity variations in response to land cover conversions in the Three Gorges Reservoir Region.Journal of Mountain Science, 15(3): 590-605. |
[6] | Feng S, Tang M C, Wang D M.1998. The Qinghai-Tibet Plateau is New Evidence for the Starting Zone of Climate Change in China. Chinese Science Bulletin, 43(6): 633. (in Chinese) |
[7] | Fisher J B, Whittaker R J, Malhi Y.2011. ET come home: potential evapotranspiration in geographical ecology.Global Ecology & Biogeography, 20(1): 1-18. |
[8] | Hu Z, Yu G, Zhou Y, et al.2009. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agricultural and Forest Meteorology, 149(9): 1410-1420. |
[9] | IPCC. 2007. Summary for Policymakers of Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cam-bridge,UK: Cambridge University Press, 18(2): 95-123. |
[10] | Jia P J.2000. Statistics. Beijing: Chinese People’s University Press. |
[11] | Li Q, Jing Y S, Ma M J, et al.2018. The characteristics of actual evapotranspiration and influencing factors of paddy field inlow hilly red soil region.Chinese Journal of Ecology, 37(1): 219-226. (in Chinese) |
[12] | Li X, Liang S, Yuan W, et al.2014. Estimation of evapotranspiration over the terrestrial ecosystems in China. Ecohydrology, 7(1): 139-149. |
[13] | Liu S, Qiang H, Dengfeng L, et al.2015. Analysis of characteristics of s patio-temporal evolution of climate factors in Datong river basin of Tibet Plateau. Journal of Water Resources and Water Engineering, 26(3): 24-29. (in Chinese) |
[14] | Liu Y, Zhou Y, Chen J, et al.2013. Evapotranspiration and water yield over China's landmass from 2000 to 2010.Hydrology and Earth System Sciences, 17(12): 4957-4980. |
[15] | Pan B T, Li J J, Chen F H.1995. Qinghai-Tibetan Plateau: a driver and amplifier of global climatic changes-Ⅰ Basic characteristics of climatic changes in Cenozoic Era.Journal of Lanzhou University (Natural Science Edition), 31(3): 120-128. (in Chinese) |
[16] | Qiang H, Jin X, Liu C, et al.2018. Variations of actual evapotranspiration in the Yangtze River headwater region based on coupled water-energy balance.Journal of Arid Land Resources and Environment, 32(3): 106-111. (in Chinese) |
[17] | Shang L Y, Zhang Y, Lv S H, et al.2015. Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau.Science Bulletin, 60(4): 435-446. |
[18] | Shao T B, Liu Y Z, Jia R,et al.2017.Changes of energy budget in the Qinghai-Tibet Plateau under the background of global warming. The 34th Annual Meeting of the Chinese Meteorological Society. |
[19] | Shen Z X, Fu G.2016. Relationships between water use efficiency and environmental temperature and humidity in an alpine meadow in the Northern Tibet.Ecology and Environmental Sciences, 25(8): 1259-1263. (in Chinese) |
[20] | Tang M, Zhang B, et al.2016. Characteristics of temporal and spatial variations of surface aridity index and climatic factors on the impact in headwaters of the three rivers in recent 55 years. Ecology and Environmental Sciences, 25(2): 248-259. (in Chinese) |
[21] | Wang F, Wang Z, Zhang Y, et al.2018. Spatio-temporal variations of evapotranspiration in Anhui Province using MOD16 products.Resources and Environment in the Yangtze Basin, 27(3): 523-534. (in Chinese) |
[22] | Wang J, Dong J, Liu J, et al.2014. Comparison of gross primary productivity derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia.Remote Sensing, 6(3): 2108-2133. |
[23] | Wang J, Wang J, Ye H, et al.2017. An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000-2012).Chinese Scientific Data, 2(1): 72-80. |
[24] | Wang Y, Liu Y, Jin J X, et al.2018. Contrast effects of vegetation cover change on evapotranspiration during a revegetation period in the Poyang Lake Basin, China. Forests, 9(4): 1999-4907. |
[25] | Wu J K, Zhang S Q, Wu H, et al.2015. Actual evapotranspiration in Suli Alpine Meadow in northeastern edge of Qinghai-Tibet Plateau, China. Advances in Meteorology, (12): 1687-9317. |
[26] | Wu Y.2018. Study on the trend and countermeasures of glaciers on the Tibetan Plateau.The Theoretical Platform of Tibetan Development, 1: 73-75. (in Chinese) |
[27] | Yan H, Wang S Q, Lu H Q, et al.2014. Development of a remotely sensing seasonal vegetation‐based Palmer Drought Severity Index and its application of global drought monitoring over 1982-2011.Journal of Geophysical Research Atmospheres, 119(15): 9419-9440. |
[28] | Yan H, Wang S Q, Oechel W, et al.2012. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model.Remote Sensing of Environment, 124: 581-595. |
[29] | Yan H, Wang S Q, Wang J B, et al.2016. Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982-2011 by using PDSI indices and agriculture drought survey data.Journal of Geophysical Research-Atmospheres, 121(5): 2283-2298. |
[30] | Yang Q, Ma Z G, Zheng Z Y, et al.2017. Sensitivity of potential evapotranspiration estimation to the thornthwaite and Penman-Monteith methods in the study of global drylands.Advances in Atmospheric Sciences, 34(12): 1381-1394. |
[31] | Yin Y H, WU S H, DAI E F.2010. Determining factors in potential evapotranspiration changes over China in the period 1971-2008.Chinese Science Bulletin, 55(29): 3329-3337. |
[32] | Yin Y H, Wu S H, Zhao D, et al.2012. Impact of climate change on actual evapotranspiration on the Tibetan Plateau during 1981-2010.Acta Geographica Sinica, 67(11): 1471-1481. (in Chinese) |
[33] | Yu L, Feng C Y.2012. Recent progress in climate change over Tibetan Plateau.Plateau and Mountain Meteorology Research, 32(3): 84-88. (in Chinese) |
[34] | Yuan W, Liu S, Yu G, et al.2010. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data.Remote Sensing of Environment, 114(7): 1416-1431. |
[35] | Zeng F M.2014. Global warming aggravates the “warming and humidifying”of the Qinghai-Tibet Plateau.New Tibet, (8): 63-63. (in Chinese) |
[36] | Zeng Z, Piao S, Xin L, et al.2012. Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models.Environment Research Letters, 7(1): 1748-9326. |
[37] | Zhan Q Q.2017. Spatial and temporal variations of evapotranspiration in the Qinghai-Tibet Plateau from 2001 to 2014.Science & Technology Information, 15(35): 218-219. (in Chinese) |
[38] | Zhang Q F, Liu G X, Yu H B, et al.2016. Temporal and spatial dynamic of ET based on MOD16A2 in recent fourteen years in Xilingol Steppe.Acta Agrestia Sinica, 24(2): 286-293. (in Chinese) |
[39] | Zhang Q, Yang Q, Cheng J, et al.2018. Characteristics of 3'' SRTM Errors in China. Geomatics & Information Science of Wuhan University, 43(5): 684-690. (in Chinese) |
[40] | Zhang T, Gebremichael M, Meng X, et al.2017. Climate‐related trends of actual evapotranspiration over the Tibetan Plateau (1961-2010).International Journal of Climatology, 38(1): 48-56. |
[41] | Zhang X, Yang Y, Piao S, et al.2015. Ecological change on the Tibetan Plateau.Chinese Science Bulletin, 60(32): 3048-3056. (in Chinese) |
[42] | Zhao D S, Wu S H, Yin Y H, et al.2011. Vegetation distribution on Tibetan Plateau under climate change scenario.Regional Environmental Change, 11(4): 905-915. |
[43] | Zhao G S, Dong J W, Cui Y P, et al.2018. Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-Tianjin- Hebei region, China.Climate Dynamics, 327(51): 1-15. |
[44] | Zhu Z, Bi J, Pan Y, et al.2013. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sensing, 5(2): 927-948. |
[1] | HAN Zhiyong, LI Tao, LIU Ximei. Temporal and Spatial Characteristics and Evolution of China’s Inbound Tourism Carbon Footprint [J]. Journal of Resources and Ecology, 2021, 12(1): 56-67. |
[2] | FENG Yunfei, DI Yingwei, ZHANG Jing, ZHANG Xianzhou, SHI Peili, Niu Ben. Impact of Grazing Exclusion on the Surface Heat Balance in North Tibet [J]. Journal of Resources and Ecology, 2020, 11(3): 283-289. |
[3] | WU Liang, WANG Min, OUYANG Hua, CHENG Shengkui, SONG MingHua. Spatial Distribution Modelling of Kobresia pygmaea (Cyperaceae) on the Qinghai-Tibetan Plateau [J]. Journal of Resources and Ecology, 2017, 8(1): 20-29. |
[4] | SUN Liang, SUN Rui, LI Xiaowen, CHEN Huailiang, ZHANG Xuefen. Estimating Evapotranspiration Using Improved Fractional Vegetation Cover and Land Surface Temperature Space [J]. Journal of Resources and Ecology, 2011, 2(3): 225-231. |
[5] | PAN Guoyan, OUYANG Zhu, LUO Qunying, YU Qiang, WANG Jishun . Water Consumption of Seven Forage Cultivars under Different Climatic Conditions in the North China Plain [J]. Journal of Resources and Ecology, 2011, 2(1): 74-82. |
[6] | LI Shuang-Cheng, YANG Zhuo-Xiang, GAO Yang. Scale-dependent Spatial Relationships between NDVI and Abiotic Factors [J]. Journal of Resources and Ecology, 2010, 1(4): 361-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||