Journal of Resources and Ecology ›› 2023, Vol. 14 ›› Issue (2): 423-432.DOI: 10.5814/j.issn.1674-764x.2023.02.020
• Plant Ecology • Previous Articles
GUO Shiyu1(), SONG Dekai2, XU Zijing1,*(
), CHEN Shiyun2, CHEN Zeyan2, DU Peng2, WANG Yang1
Received:
2021-12-02
Accepted:
2022-04-02
Online:
2023-03-30
Published:
2023-02-21
Contact:
XU Zijing
About author:
GUO Shiyu, E-mail: guoshiyu3201@163.com
Supported by:
GUO Shiyu, SONG Dekai, XU Zijing, CHEN Shiyun, CHEN Zeyan, DU Peng, WANG Yang. Response of Natural Regeneration of Pinus massoniana and Quercus variabilis Mixed Forest to Thinning Intensity and Environmental Factors[J]. Journal of Resources and Ecology, 2023, 14(2): 423-432.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2023.02.020
Thinning intensity | Quadrat No. | Composition of trees | Aspect | Slope (°) | Slope position | DBH (cm) | Tree height (m) | Canopy density | Stand density after thinning (plants ha-1) |
---|---|---|---|---|---|---|---|---|---|
WT | 1 | Pm: Qv: Cf (7:2:1) | E | 6 | up | 13.00±3.72 | 10.67±1.22 | 0.82 | 1577 |
2 | Pm: Qv :Cf (6:3:1) | NW | 7.5 | middle | 13.36±5.06 | 11.04±1.21 | 0.84 | 1535 | |
3 | Pm: Qv: Cf: Ic (4: 4:1:1) | S | 6.5 | middle | 12.96±5.18 | 10.54±1.23 | 0.84 | 1395 | |
4 | Pm: Qv: Cf (6:3:1) | SE | 5 | down | 15.14±4.56 | 12.22±1.24 | 0.85 | 1231 | |
5 | Pm: Qv (7:3) | NW | 5 | down | 15.38±4.75 | 12.56±1.22 | 0.81 | 1382 | |
6 | Pm: Qv: Cf (7:2:1) | E | 6 | middle | 17.33±6.98 | 12.86±1.35 | 0.79 | 1425 | |
7 | Pm: Qv: Cf (7:2:1) | S | 10 | down | 15.56±4.59 | 12.66±1.23 | 0.80 | 1580 | |
8 | Pm: Qv: Cf (7:2:1) | E | 6 | down | 14.00±4.12 | 11.49±1.22 | 0.82 | 1635 | |
LT | 9 | Pm: Qv: Cf (7:2:1) | NE | 9.5 | down | 14.67±4.37 | 11.94±1.23 | 0.72 | 1055 |
10 | Pm: Qv: Cf: Ic (6:2:1:1) | SE | 4.5 | middle | 14.06±4.83 | 11.82±1.19 | 0.75 | 1266 | |
11 | Pm: Qv: Cf (6:2:2) | S | 4.5 | down | 16.67±7.59 | 13.23±1.26 | 0.75 | 1302 | |
12 | Pm: Qv: Cf (7:2:1) | SE | 5 | down | 15.45±6.05 | 12.17±1.27 | 0.65 | 972 | |
13 | Pm: Qv: (7:3) | S | 4.5 | middle | 14.91±4.43 | 11.93±1.25 | 0.75 | 1569 | |
14 | Pm: Qv (7:3) | SW | 6.5 | middle | 14.41±4.97 | 12.02±1.20 | 0.79 | 1302 | |
15 | Pm: Qv: Cf (8:1:1) | E | 15.5 | down | 15.55±4.52 | 12.08±1.29 | 0.77 | 1149 | |
MT | 16 | Pm: Qv (8:2) | N | 15.5 | down | 17.45±4.29 | 13.22±1.32 | 0.71 | 935 |
17 | Pm: Qv: Cf (6:3:1) | N | 11 | down | 14.26±4.16 | 11.42±1.25 | 0.80 | 1181 | |
18 | Pm: Qv (7:3) | N | 15.5 | down | 14.92±4.81 | 11.84±1.26 | 0.70 | 956 | |
19 | Pm: Qv (8:2) | E | 9.5 | down | 14.70±4.54 | 11.77±1.25 | 0.60 | 680 | |
20 | Pm: Qv (9:1) | S | 5 | up | 17.57±5.56 | 13.11±1.34 | 0.71 | 971 | |
21 | Pm: Qv: Cf (6:3:1) | W | 10 | down | 15.92±7.12 | 12.44±1.28 | 0.68 | 818 | |
22 | Pm: Qv (9:1) | E | 6.5 | up | 15.71±3.39 | 12.60±1.25 | 0.60 | 649 | |
23 | Pm: Qv (8:2) | S | 11 | middle | 17.72±6.36 | 13.32±1.33 | 0.75 | 894 | |
24 | Pm: Qv: Cf (7:2:1) | W | 9.5 | up | 15.43±4.78 | 11.96±1.29 | 0.65 | 726 | |
25 | Pm: Qv (8:2) | SE | 8.5 | up | 18.09±7.64 | 13.11±1.38 | 0.65 | 793 | |
CK | 26 | Pm: Qv: Cf (6:3:1) | E | 10 | middle | 12.65±6.10 | 11.307±1.12 | 0.92 | 2121 |
27 | Pm: Qv: Cf: Pc (2:6:1:1) | E | 12.5 | middle | 11.31±4.45 | 12.64±1.06 | 0.90 | 1661 | |
28 | Pm: Qv: Cf (7:2:1) | E | 13.5 | down | 12.84±4.48 | 11.27±1.14 | 0.90 | 2052 |
Table 1 Basic conditions of sampling plots
Thinning intensity | Quadrat No. | Composition of trees | Aspect | Slope (°) | Slope position | DBH (cm) | Tree height (m) | Canopy density | Stand density after thinning (plants ha-1) |
---|---|---|---|---|---|---|---|---|---|
WT | 1 | Pm: Qv: Cf (7:2:1) | E | 6 | up | 13.00±3.72 | 10.67±1.22 | 0.82 | 1577 |
2 | Pm: Qv :Cf (6:3:1) | NW | 7.5 | middle | 13.36±5.06 | 11.04±1.21 | 0.84 | 1535 | |
3 | Pm: Qv: Cf: Ic (4: 4:1:1) | S | 6.5 | middle | 12.96±5.18 | 10.54±1.23 | 0.84 | 1395 | |
4 | Pm: Qv: Cf (6:3:1) | SE | 5 | down | 15.14±4.56 | 12.22±1.24 | 0.85 | 1231 | |
5 | Pm: Qv (7:3) | NW | 5 | down | 15.38±4.75 | 12.56±1.22 | 0.81 | 1382 | |
6 | Pm: Qv: Cf (7:2:1) | E | 6 | middle | 17.33±6.98 | 12.86±1.35 | 0.79 | 1425 | |
7 | Pm: Qv: Cf (7:2:1) | S | 10 | down | 15.56±4.59 | 12.66±1.23 | 0.80 | 1580 | |
8 | Pm: Qv: Cf (7:2:1) | E | 6 | down | 14.00±4.12 | 11.49±1.22 | 0.82 | 1635 | |
LT | 9 | Pm: Qv: Cf (7:2:1) | NE | 9.5 | down | 14.67±4.37 | 11.94±1.23 | 0.72 | 1055 |
10 | Pm: Qv: Cf: Ic (6:2:1:1) | SE | 4.5 | middle | 14.06±4.83 | 11.82±1.19 | 0.75 | 1266 | |
11 | Pm: Qv: Cf (6:2:2) | S | 4.5 | down | 16.67±7.59 | 13.23±1.26 | 0.75 | 1302 | |
12 | Pm: Qv: Cf (7:2:1) | SE | 5 | down | 15.45±6.05 | 12.17±1.27 | 0.65 | 972 | |
13 | Pm: Qv: (7:3) | S | 4.5 | middle | 14.91±4.43 | 11.93±1.25 | 0.75 | 1569 | |
14 | Pm: Qv (7:3) | SW | 6.5 | middle | 14.41±4.97 | 12.02±1.20 | 0.79 | 1302 | |
15 | Pm: Qv: Cf (8:1:1) | E | 15.5 | down | 15.55±4.52 | 12.08±1.29 | 0.77 | 1149 | |
MT | 16 | Pm: Qv (8:2) | N | 15.5 | down | 17.45±4.29 | 13.22±1.32 | 0.71 | 935 |
17 | Pm: Qv: Cf (6:3:1) | N | 11 | down | 14.26±4.16 | 11.42±1.25 | 0.80 | 1181 | |
18 | Pm: Qv (7:3) | N | 15.5 | down | 14.92±4.81 | 11.84±1.26 | 0.70 | 956 | |
19 | Pm: Qv (8:2) | E | 9.5 | down | 14.70±4.54 | 11.77±1.25 | 0.60 | 680 | |
20 | Pm: Qv (9:1) | S | 5 | up | 17.57±5.56 | 13.11±1.34 | 0.71 | 971 | |
21 | Pm: Qv: Cf (6:3:1) | W | 10 | down | 15.92±7.12 | 12.44±1.28 | 0.68 | 818 | |
22 | Pm: Qv (9:1) | E | 6.5 | up | 15.71±3.39 | 12.60±1.25 | 0.60 | 649 | |
23 | Pm: Qv (8:2) | S | 11 | middle | 17.72±6.36 | 13.32±1.33 | 0.75 | 894 | |
24 | Pm: Qv: Cf (7:2:1) | W | 9.5 | up | 15.43±4.78 | 11.96±1.29 | 0.65 | 726 | |
25 | Pm: Qv (8:2) | SE | 8.5 | up | 18.09±7.64 | 13.11±1.38 | 0.65 | 793 | |
CK | 26 | Pm: Qv: Cf (6:3:1) | E | 10 | middle | 12.65±6.10 | 11.307±1.12 | 0.92 | 2121 |
27 | Pm: Qv: Cf: Pc (2:6:1:1) | E | 12.5 | middle | 11.31±4.45 | 12.64±1.06 | 0.90 | 1661 | |
28 | Pm: Qv: Cf (7:2:1) | E | 13.5 | down | 12.84±4.48 | 11.27±1.14 | 0.90 | 2052 |
Family | Genus | Species | CK | WT | LT | MT |
---|---|---|---|---|---|---|
Cupressaceae | Cupressus | C. funebris | √ | √ | √ | √ |
Euphorbiaceae | Vernicia | V. fordii | √ | √ | ||
Euphorbiaceae | Triadica | T. sebifera | √ | √ | √ | |
Euphorbiaceae | Mallotus | M. apelta | √ | √ | √ | √ |
Euphorbiaceae | Glochidion | G. puberum | √ | √ | ||
Aquifoliaceae | Ilex | I. cornuta | √ | |||
Aquifoliaceae | Ilex | I. chinensis | √ | √ | √ | √ |
Fabaceae | Dalbergia | D. hupeana | √ | √ | √ | |
Fabaceae | Albizia | A. kalkora | √ | √ | ||
Ericaceae | Rhododendron | R. simsii | √ | |||
Eucommiaceae | Eucommia | E. ulmoides | √ | |||
Pittosporaceae | Pittosporum | P. truncatum | √ | √ | √ | √ |
Juglandaceae | Platycarya | P.strobilacea | √ | |||
Fagaceae | Quercus | Q. variabilis | √ | √ | √ | √ |
Meliaceae | Melia | M. azedarach | √ | |||
Verbenaceae | Vitex | V. negundo | √ | √ | √ | |
Oleaceae | Ligustrum | L. lucidum | √ | |||
Anacardiaceae | Cotinus | C. coggygria | √ | |||
Anacardiaceae | Rhus | R. chinensis | √ | √ | √ | √ |
Anacardiaceae | Pistacia | P. chinensis | √ | √ | √ | |
Rosaceae | Dichotomanthes | D. tristaniicarpa | √ | √ | √ | |
Rosaceae | Prunus | P. salicina | √ | |||
Moraceae | Broussonetia | B. papyrifera | √ | √ | √ | |
Symplocaceae | Symplocos | S. sumuntia | √ | √ | √ | √ |
Staphyleaceae | Euscaphis | E. japonica | √ | |||
Ebenaceae | Diospyros | D. kaki | √ | √ | √ | |
Ebenaceae | Diospyros | D. lotus | √ | √ | ||
Rhamnaceae | Ziziphus | Z. jujuba | √ | |||
Pinaceae | Pinus | P. massoniana | √ | √ | √ | |
Ulmaceae | Celtis | C. sinensis | √ | √ | √ | |
Rutaceae | Zanthoxylum | Z. avicennae | √ | |||
Lauraceae | Lindera | L. glauca | √ | √ | √ | √ |
Table 2 Regenerated species associated with different thinning intensities
Family | Genus | Species | CK | WT | LT | MT |
---|---|---|---|---|---|---|
Cupressaceae | Cupressus | C. funebris | √ | √ | √ | √ |
Euphorbiaceae | Vernicia | V. fordii | √ | √ | ||
Euphorbiaceae | Triadica | T. sebifera | √ | √ | √ | |
Euphorbiaceae | Mallotus | M. apelta | √ | √ | √ | √ |
Euphorbiaceae | Glochidion | G. puberum | √ | √ | ||
Aquifoliaceae | Ilex | I. cornuta | √ | |||
Aquifoliaceae | Ilex | I. chinensis | √ | √ | √ | √ |
Fabaceae | Dalbergia | D. hupeana | √ | √ | √ | |
Fabaceae | Albizia | A. kalkora | √ | √ | ||
Ericaceae | Rhododendron | R. simsii | √ | |||
Eucommiaceae | Eucommia | E. ulmoides | √ | |||
Pittosporaceae | Pittosporum | P. truncatum | √ | √ | √ | √ |
Juglandaceae | Platycarya | P.strobilacea | √ | |||
Fagaceae | Quercus | Q. variabilis | √ | √ | √ | √ |
Meliaceae | Melia | M. azedarach | √ | |||
Verbenaceae | Vitex | V. negundo | √ | √ | √ | |
Oleaceae | Ligustrum | L. lucidum | √ | |||
Anacardiaceae | Cotinus | C. coggygria | √ | |||
Anacardiaceae | Rhus | R. chinensis | √ | √ | √ | √ |
Anacardiaceae | Pistacia | P. chinensis | √ | √ | √ | |
Rosaceae | Dichotomanthes | D. tristaniicarpa | √ | √ | √ | |
Rosaceae | Prunus | P. salicina | √ | |||
Moraceae | Broussonetia | B. papyrifera | √ | √ | √ | |
Symplocaceae | Symplocos | S. sumuntia | √ | √ | √ | √ |
Staphyleaceae | Euscaphis | E. japonica | √ | |||
Ebenaceae | Diospyros | D. kaki | √ | √ | √ | |
Ebenaceae | Diospyros | D. lotus | √ | √ | ||
Rhamnaceae | Ziziphus | Z. jujuba | √ | |||
Pinaceae | Pinus | P. massoniana | √ | √ | √ | |
Ulmaceae | Celtis | C. sinensis | √ | √ | √ | |
Rutaceae | Zanthoxylum | Z. avicennae | √ | |||
Lauraceae | Lindera | L. glauca | √ | √ | √ | √ |
Thinning intensity | Different height class (H) regeneration densities (plants ha-1) | |||
---|---|---|---|---|
H<30 cm | 30 cm≤H<50 cm | H≥50 cm | Total | |
CK | 2133 | 2000 | 533.2 | 4667 |
WT | 11300 | 4600 | 2150 | 18050 |
LT | 16857 | 8000 | 2914 | 27771 |
MT | 18667 | 5200 | 5156 | 29022 |
Table 3 Natural regeneration seedling heights and regeneration densities at each thinning intensity
Thinning intensity | Different height class (H) regeneration densities (plants ha-1) | |||
---|---|---|---|---|
H<30 cm | 30 cm≤H<50 cm | H≥50 cm | Total | |
CK | 2133 | 2000 | 533.2 | 4667 |
WT | 11300 | 4600 | 2150 | 18050 |
LT | 16857 | 8000 | 2914 | 27771 |
MT | 18667 | 5200 | 5156 | 29022 |
Thinning intensity | S | D | H′ | Jsw | Ea |
---|---|---|---|---|---|
CK | 5.67±0.58b | 0.75±0.03a | 1.52±0.18a | 0.92±0.03a | 0.87±0.06a |
WT | 7.38±2.20ab | 0.70±0.14a | 1.49±0.39a | 0.77±0.13b | 0.74±0.12ab |
LT | 9.57±4.08a | 0.73±0.10a | 1.63±0.38a | 0.75±0.09b | 0.70±0.08b |
MT | 9.55±2.55a | 0.70±0.11a | 1.54±0.24a | 0.73±0.13b | 0.68±0.15b |
Table 4 Richness and diversity of regenerated species in the undergrowth
Thinning intensity | S | D | H′ | Jsw | Ea |
---|---|---|---|---|---|
CK | 5.67±0.58b | 0.75±0.03a | 1.52±0.18a | 0.92±0.03a | 0.87±0.06a |
WT | 7.38±2.20ab | 0.70±0.14a | 1.49±0.39a | 0.77±0.13b | 0.74±0.12ab |
LT | 9.57±4.08a | 0.73±0.10a | 1.63±0.38a | 0.75±0.09b | 0.70±0.08b |
MT | 9.55±2.55a | 0.70±0.11a | 1.54±0.24a | 0.73±0.13b | 0.68±0.15b |
Thinning intensity | Species count | Intrinsic diversity higher than the stand | Intrinsic diversity lower than the stand |
---|---|---|---|
CK | 10 | CK≤WT, LT, MT | ≤CK |
WT | 18 | WT≤LT, MT | CK≤WT |
LT | 24 | LT≤MT | CK, WT≤LT |
MT | 27 | MT≤ | CK, WT, LT≤MT |
Table 5 Multiple comparisons of intrinsic diversities of regenerated tree species
Thinning intensity | Species count | Intrinsic diversity higher than the stand | Intrinsic diversity lower than the stand |
---|---|---|---|
CK | 10 | CK≤WT, LT, MT | ≤CK |
WT | 18 | WT≤LT, MT | CK≤WT |
LT | 24 | LT≤MT | CK, WT≤LT |
MT | 27 | MT≤ | CK, WT, LT≤MT |
Fig. 3 Effects of stand factors and environmental factors on regeneration Note: P<0.05; S: Richness; H′: Shannon-Weiner index; Jsw: Pielou evenness; D: Simpson index; As: Aspect; Sl: slope; Sp: slope position; Sd: stand density; Ti: thinning intensity; Cd: canopy density; Rd: regeneration density.
[1] | Adams V M, Marsh D M, Knox J S. 2005. Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biological Conservation, 124: 425-436. |
[2] | Bellow J G, Nair P. 2003. Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agricultural and Forest Meteorology, 114(3/4): 197-211. |
[3] | Cantón Y, Barrio G D, Solé-Benet A, et al. 2004. Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. CATENA, 55(3): 341-365. |
[4] | Cao H, Zhang C Y, Gong X F, et al. 2021. Effect of target tree management in subtropical secondary evergreen broad-leaved forest. Journal of Zhejiang Forestry of Sciences and Technology, 41(4): 15-23. (in Chinese) |
[5] | Caughlin T T, Peña-Domene M, Martínez-Garza C. 2018. Demographic costs and benefits of natural regeneration during tropical forest restoration. Ecology Letters, 22(1): 34-44. |
[6] | Chazdon R L, Guariguata M R. 2016. Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica, 48(6): 716-730. |
[7] | Connell J H. 1978. Diversity in tropical rain forests and coral reefs. Science, 199(4335): 1302-1310. |
[8] | Deng S K, Liao S S, Huang B H, et al. 2013. Natural regeneration and its influencing factors of Castanopsis hystrix plantation at Pingxiang, Guangxi. Guangxi Forestry Science, 42(1): 48-51, 60. (in Chinese) |
[9] | Dong L L, Zhao J C, Wang C C, et al. 2019. Study on diameter structure and growth dynamics of mixed Quercus mongolica broad-leaved natural stands after tending thinning. Journal of Southwest Forestry University, 39(6): 98-104. (in Chinese) |
[10] | Fischer H, Huth F, Hagemann U, et al. 2016. Developing restoration strategies for temperate forests using natural regeneration processes. In: Stanturf J A(Restoration of boreal and temperate forests(second edition). Boca Raton, USA: CRC Press:103-164. |
[11] | Gavinet J, Prévosto B, Femandez C. 2016. Do shrubs facilitate oak seedling establishment in Mediterranean pine forest understory? Forest Ecology and Management, 381: 289-296. |
[12] | Gong G T, Niu M, Mu C L, et al. 2015. Impacts of different thinning intensities on growth of Cupressus funebris plantation and understory plants. Scientia Silvae Sinicae, 51(4): 8-15. (in Chinese) |
[13] | Guo S Y, Forster H, Chen X L. 2021a. Target tree management: German experience and Hubei practices. World Forestry Research, 34(2): 14-20. (in Chinese) |
[14] | Guo S Y, Zhou X L, Shi L Z, et al. 2021b. Effectiveness of close-to-nature forest management in Bavaria of Germany. Forest Inventory and Planning, 46(1): 129-134. (in Chinese) |
[15] | Hari P. 2021. Implications of anthropogenic disturbances for species diversity, recruitment and carbon density in the mid-hills forests of Nepal. Journal of Resources and Ecology, 12(1): 1-10. |
[16] | Hosseinzadeh R, Soosani J, Alijani V, et al. 2016. Diversity of woody plant species and their relationship to physiographic factors in central Zagros forests (Case study: Perc forest, Khorramabad, Iran). Journal of Forestry Research, 27(5): 1137-1141. |
[17] | Hurlbert S H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology, 52: 577-586. |
[18] | Hutchinson T F, Boerner R E J, Iverson L R, et al. 1999. Landscape patterns of understory composition and richness across a moisture and nitrogen mineralization gradient in Ohio (USA) Quercus forests. Plant Ecology, 144: 177-189. |
[19] | Peterson J E, Baldwin A H. 2004. Seedling emergence from seed banks of tidal fresh water wetlands: Response to inundation and sedimentation. Aquatic Botany, 78: 243-254. |
[20] | Lei X D, Tang S Z. 2002. Community intrinsic diversity ordering and its application. Forest Research, 15(3): 285-290. (in Chinese) |
[21] | Li R, Zhang W H, He J F, et al. 2011. Effect of thinning on natural regeneration and growth of Quercus wutaishanica saplings. Journal of Northwest A&F University(Natural Science Edition), 39(1): 52-60. (in Chinese) |
[22] | Li Y Y, Tsang E P K, Cui M Y, et al. 2012. Too early to call it success: An evaluation of the natural regeneration of the endangered Metasequoia glyptostroboides. Biological Conservation, 150(1): 1-4. |
[23] | Liu L, Cai M K, Liu X, et al. 2019. Effects of thinning on ecological stoichiometry C, N and P in leaves, roots and soil of Larix principis-rupprechtii plantation. Journal of Northeast Forestry University, 47(8): 1-7. (in Chinese) |
[24] | Lu Y C, Zhang W H, Lu Y C. 2006. Effects of different management practices on population structure and dynamics of Quercus liaotungensis. Acta Botanica Boreali-Occidentalia Sinica, 26(7): 1407-1413. (in Chinese) |
[25] | Olson M G, Meyer S R, Wagner R G, et al. 2014. Commercial thinning stimulates natural regeneration in spruce-fir stands. Canadian Journal of Forest Research, 44(3): 173-181. |
[26] | Ou Y D, Su Z Y, Li Z K, et al. 2011. Effects of topographic factors on the distribution patterns of ground plants with different growth forms in montane forests in North Guangdong, China. Chinese Journal of Applied Ecology, 22(5): 1107-1113. (in Chinese) |
[27] | Patil G P, Taillie C. 1982. Diversity as a concept and its measurement. Journal of American Statistical Association, 77(379): 548-561. |
[28] | Piiroinen T, Valtonen A, Roiniene H. 2017. The seed-to-seedling transition is limited by ground vegetation and vertebrate herbivores in a selectively logged rainforest. Forest Ecology and Management, 384: 137-146. |
[29] | Rocha G P E, Vieira D L M, Simon M F. 2016. Fast natural regeneration in abandoned pastures in southern Amazonia. Forest Ecology and Management, 370: 93-101. |
[30] | Sweson N G, Aaglada-Cordero P, Barone J A. 2011. Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along all elevational gradient. Biological Sciences, 278(1707): 877-884. |
[31] | Tang S Z, Lang J K, Li H S. 2009. Forestry statistics. Beijing, China: Science Press: 447-457. (in Chinese) |
[32] | Wang R H, Ge X M, Tang L H. 2014. A review of diversity, biomass and nutrient effect of understory vegetation. World Forestry Research, 27(1): 43-48. (in Chinese) |
[33] | Wei A R, Zhang Y Q, Tan L Z, et al. 2019. Effects of tending felling on stand structure and species diversity of mixed coniferous and broadleaved forest, Journal of Beijing Forestry University, 41(5): 148-158. (in Chinese) |
[34] | Wen P Y, Jin G Z. 2019. Effects of topography on species diversity in a typical mixed broadleaved-Korean pine forest. Acta Ecologica Sinica, 39(3): 945-956. (in Chinese) |
[35] | Xiao Z L, Jing S H, Liang G Z, et al. 2019. Natural population distribution pattern of Pinus mossoniana in Dayan Nature Reserve of Yuan’an County. Journal of Hunan Ecological Science, 6(2): 20-26. (in Chinese) |
[36] | Xu X W, Xu X H, Luo Z J, et al. 2021. Occurrence and control of pine wood nematode disease in Hubei. Hubei Forestry Science and Technology, 50(2): 54-59. (in Chinese) |
[37] | Yan D F, Ma R T, Yang Q P, et al. 2019. Effect of thinning intensity on seedling regeneration characteristics in natural secondary oak forests. Journal of Henan Agricultural University, 53(2): 187-192. (in Chinese) |
[38] | Yang X Y. 2005. Preliminary discussion on closing-to-nature treatment of China’s man-made forest. Central China Forest Inventory and Planning, 24(4): 7-9. (in Chinese) |
[39] | Zhang X H, Zhang H R, Lu J, et al. 2020. Early effects of crop tree release tending on growth of natural secondary Quercus mongolica forest. Scientia Silvae Sinicae, 56(10): 83-92. (in Chinese) |
[40] | Zhang X P, Wang D X, Zhang P, et al. 2017. Effects of thinning on the diversity of undergrowth of Pinus armandii plantation in Xiaolong Mountainous region. Journal of Northwest Forestry University, 32(2): 37-42. (in Chinese) |
[41] | Zheng J K, Wei T X, Zheng L K, et al. 2009. Effects of landforms on α biodiversity in slope scale. Ecology and Environmental Sciences, 18(6): 2254-2259. (in Chinese) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||