Journal of Resources and Ecology ›› 2023, Vol. 14 ›› Issue (2): 344-356.DOI: 10.5814/j.issn.1674-764x.2023.02.012
• Resource Economy • Previous Articles Next Articles
Received:
2022-01-07
Accepted:
2022-05-20
Online:
2023-03-30
Published:
2023-02-21
Contact:
ZHOU You
Supported by:
ZHOU You. The Impact of the Spatial Agglomeration of Producer Services on Urban Productivity[J]. Journal of Resources and Ecology, 2023, 14(2): 344-356.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2023.02.012
Year | Professional agglomeration of producer services (SP) | Diversified agglomeration of producer services (DV) | Urban productivity (CP) | ||||||
---|---|---|---|---|---|---|---|---|---|
Moran | Value of Z | Value of P | Moran | Value of Z | Value of P | Moran | Value of Z | Value of P | |
2008 | 0.2397 | 2.7339 | 0.0280 | 0.3011 | 7.2405 | 0.0000 | 0.3934 | 8.9295 | 0.0000 |
2009 | 0.2786 | 3.1120 | 0.0060 | 0.3003 | 6.9101 | 0.0000 | 0.3875 | 8.1123 | 0.0000 |
2010 | 0.2817 | 3.2152 | 0.0059 | 0.2951 | 6.8716 | 0.0000 | 0.3648 | 8.3356 | 0.0000 |
2011 | 0.2919 | 3.3315 | 0.0028 | 0.3021 | 7.0123 | 0.0000 | 0.4064 | 8.1159 | 0.0000 |
2012 | 0.3012 | 3.6452 | 0.0021 | 0.3617 | 7.9803 | 0.0000 | 0.3983 | 5.0906 | 0.0892 |
2013 | 0.2498 | 2.8877 | 0.0168 | 0.2740 | 5.6689 | 0.0000 | 0.3896 | 7.9953 | 0.0000 |
2014 | 0.2325 | 2.4723 | 0.0310 | 0.2509 | 5.1562 | 0.0000 | 0.3778 | 7.8650 | 0.0000 |
2015 | 0.2401 | 2.7661 | 0.0179 | 0.2778 | 6.1101 | 0.0000 | 0.0988 | 8.1167 | 0.0000 |
2016 | 0.2652 | 3.0010 | 0.0067 | 0.2910 | 6.2391 | 0.0000 | 0.3994 | 7.6875 | 0.0000 |
2017 | 0.2633 | 2.9716 | 0.0071 | 0.3061 | 6.3744 | 0.0000 | 0.3769 | 7.3892 | 0.0000 |
2018 | 0.2382 | 2.5413 | 0.0307 | 0.2879 | 6.2305 | 0.0000 | 0.3790 | 8.0503 | 0.0000 |
Table 1 Moran index values of producer services agglomeration and urban productivity from 2008 to 2018
Year | Professional agglomeration of producer services (SP) | Diversified agglomeration of producer services (DV) | Urban productivity (CP) | ||||||
---|---|---|---|---|---|---|---|---|---|
Moran | Value of Z | Value of P | Moran | Value of Z | Value of P | Moran | Value of Z | Value of P | |
2008 | 0.2397 | 2.7339 | 0.0280 | 0.3011 | 7.2405 | 0.0000 | 0.3934 | 8.9295 | 0.0000 |
2009 | 0.2786 | 3.1120 | 0.0060 | 0.3003 | 6.9101 | 0.0000 | 0.3875 | 8.1123 | 0.0000 |
2010 | 0.2817 | 3.2152 | 0.0059 | 0.2951 | 6.8716 | 0.0000 | 0.3648 | 8.3356 | 0.0000 |
2011 | 0.2919 | 3.3315 | 0.0028 | 0.3021 | 7.0123 | 0.0000 | 0.4064 | 8.1159 | 0.0000 |
2012 | 0.3012 | 3.6452 | 0.0021 | 0.3617 | 7.9803 | 0.0000 | 0.3983 | 5.0906 | 0.0892 |
2013 | 0.2498 | 2.8877 | 0.0168 | 0.2740 | 5.6689 | 0.0000 | 0.3896 | 7.9953 | 0.0000 |
2014 | 0.2325 | 2.4723 | 0.0310 | 0.2509 | 5.1562 | 0.0000 | 0.3778 | 7.8650 | 0.0000 |
2015 | 0.2401 | 2.7661 | 0.0179 | 0.2778 | 6.1101 | 0.0000 | 0.0988 | 8.1167 | 0.0000 |
2016 | 0.2652 | 3.0010 | 0.0067 | 0.2910 | 6.2391 | 0.0000 | 0.3994 | 7.6875 | 0.0000 |
2017 | 0.2633 | 2.9716 | 0.0071 | 0.3061 | 6.3744 | 0.0000 | 0.3769 | 7.3892 | 0.0000 |
2018 | 0.2382 | 2.5413 | 0.0307 | 0.2879 | 6.2305 | 0.0000 | 0.3790 | 8.0503 | 0.0000 |
Variable | Mean | Standard deviation | Minimum | Maximum | Number of samples |
---|---|---|---|---|---|
CP (Urban productivity) | 0.3472 | 0.2512 | 0.0356 | 0.8911 | 3146 |
SP (Professional agglomeration of producer services) | 0.4811 | 0.2113 | 0.1210 | 1.7932 | 3146 |
DV (Diversified agglomeration of producer services) | 0.9112 | 0.2210 | 0.3733 | 1.9024 | 3146 |
K (Per capita capital investment, ×104 yuan) | 2.5732 | 7.4047 | 0.6333 | 11.0007 | 3146 |
L (Labor input, ×104 people) | 103.5178 | 1812.4915 | 9.7900 | 2115.7700 | 3146 |
MS (Market scale, yuan) | 8.9940 | 0.6581 | 6.8223 | 11.6972 | 3146 |
TRI (Investment in scientific and technological innovation, yuan) | 3.6400 | 11341.6000 | 0.0643 | 201.5000 | 3146 |
FDI (Foreign direct investment, yuan) | 800.2943 | 43221.3100 | 100.1142 | 3000.2855 | 3146 |
HC (Human capital) | 0.1142 | 0.1281 | 0.0120 | 0.3341 | 3146 |
TC (Traffic conditions, m2) | 7.1156 | 4.6531 | 0.6122 | 62.4785 | 3146 |
Table 2 Statistical values of sample data for the variables of 286 urban cities in China for 2008-2018
Variable | Mean | Standard deviation | Minimum | Maximum | Number of samples |
---|---|---|---|---|---|
CP (Urban productivity) | 0.3472 | 0.2512 | 0.0356 | 0.8911 | 3146 |
SP (Professional agglomeration of producer services) | 0.4811 | 0.2113 | 0.1210 | 1.7932 | 3146 |
DV (Diversified agglomeration of producer services) | 0.9112 | 0.2210 | 0.3733 | 1.9024 | 3146 |
K (Per capita capital investment, ×104 yuan) | 2.5732 | 7.4047 | 0.6333 | 11.0007 | 3146 |
L (Labor input, ×104 people) | 103.5178 | 1812.4915 | 9.7900 | 2115.7700 | 3146 |
MS (Market scale, yuan) | 8.9940 | 0.6581 | 6.8223 | 11.6972 | 3146 |
TRI (Investment in scientific and technological innovation, yuan) | 3.6400 | 11341.6000 | 0.0643 | 201.5000 | 3146 |
FDI (Foreign direct investment, yuan) | 800.2943 | 43221.3100 | 100.1142 | 3000.2855 | 3146 |
HC (Human capital) | 0.1142 | 0.1281 | 0.0120 | 0.3341 | 3146 |
TC (Traffic conditions, m2) | 7.1156 | 4.6531 | 0.6122 | 62.4785 | 3146 |
Variable | Fixed effect model of SDM | No fixed effect model of SDM |
---|---|---|
Constant | -0.0381** | |
lnSP | 0.0843*** (2.4102) | 0.1312** (1.9715) |
lnDV | 0.0281** (3.3281) | 0.0648*** (2.4127) |
lnK | 0.2641 (0.7789) | 0.2081*** (4.4569) |
lnL | 0.4411*** (11.7983) | 0.4215*** (3.7563) |
lnMS | 0.0742*** (6.2673) | 0.2156*** (3.3168) |
lnTRI | 0.1039*** (2.7523) | 0.1235** (2.4353) |
lnFDI | -0.1068 (-1.5564) | -0.1218 (-0.4877) |
lnHC | 0.2560* (1.8743) | 0.1785** (2.1376) |
lnTC | 0.1649** (2.4494) | 0.1563*** (3.2923) |
ρ | 0.2103*** (4.3567) | 0.1988*** (3.1456) |
η1 | 0.0804*** (9.5648) | 0.0695*** (9.3405) |
η2 | 0.0383*** (7.3317) | 0.0306*** (6.2294) |
R | 0.6066 | 0.5291 |
Adjusted R | 0.5992 | 0.5826 |
LogL | 1358.1784 | 1531.0959 |
Table 3 Overall sample estimation results of producer services agglomeration affecting urban productivity
Variable | Fixed effect model of SDM | No fixed effect model of SDM |
---|---|---|
Constant | -0.0381** | |
lnSP | 0.0843*** (2.4102) | 0.1312** (1.9715) |
lnDV | 0.0281** (3.3281) | 0.0648*** (2.4127) |
lnK | 0.2641 (0.7789) | 0.2081*** (4.4569) |
lnL | 0.4411*** (11.7983) | 0.4215*** (3.7563) |
lnMS | 0.0742*** (6.2673) | 0.2156*** (3.3168) |
lnTRI | 0.1039*** (2.7523) | 0.1235** (2.4353) |
lnFDI | -0.1068 (-1.5564) | -0.1218 (-0.4877) |
lnHC | 0.2560* (1.8743) | 0.1785** (2.1376) |
lnTC | 0.1649** (2.4494) | 0.1563*** (3.2923) |
ρ | 0.2103*** (4.3567) | 0.1988*** (3.1456) |
η1 | 0.0804*** (9.5648) | 0.0695*** (9.3405) |
η2 | 0.0383*** (7.3317) | 0.0306*** (6.2294) |
R | 0.6066 | 0.5291 |
Adjusted R | 0.5992 | 0.5826 |
LogL | 1358.1784 | 1531.0959 |
Variable | East | Central | Northeast | West | ||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | |
Constant | 0.1125 | 0.3116 | 0.4215 | 0.2341 | ||||
lnSP | 0.0985** (1.9968) | 0.1042* (1.7893) | 0.0796** (2.2675) | 0.0594** (2.3528) | 0.0690* (1.9907) | 0.0598* (2.1785) | 0.0694 (0.6894) | 0.1147 (1.1253) |
lnDV | 0.0396*** (4.1163) | 0.0476*** (3.3014) | 0.0795*** (3.2425) | 0.0586*** (3.3153) | 0.0677*** (2.9564) | 0.0821*** (2.9432) | 0.1452*** (7.7765) | 0.1514*** (6.8978) |
lnK | 0.0442 (1.2157) | 0.0336 (1.1098) | 0.4041** (2.3217) | 0.1654 (0.9876) | 0.4037** (2.0427) | 0.2178 (0.7976) | 0.2564*** (6.5371) | 0.1986 (0.5387) |
lnL | 0.6394*** (3.8475) | 0.5544** (2.0638) | 0.2626 (1.0495) | 0.2511 -1.5633) | 0.2494 (1.0436) | 0.26775 (1.6344) | 0.01008 (1.03941) | 0.01071 (0.60579) |
lnMS | 0.1524*** (5.9876) | 0.1165*** (3.3765) | 0.0578 (0.0958) | 0.0367** (2.1573) | 0.0648 (1.0987) | 0.0674** (2.1164) | 0.0018 (0.0768) | 0.0016 (0.0687) |
lnTRI | -0.0012 (-0.2154) | -0.0016 (-1.0382) | -0.0143 (-1.1674) | -0.198 (-1.0436) | -0.0095 (-0.7896) | -0.0185 (-1.2364) | 0.2114** (2.2171) | 0.1879** (2.3246) |
lnFDI | 0.0123** (1.9987) | 0.0063*** (3.3365) | 0.0065*** (2.3327) | 0.0127*** (5.4437) | 0.0138*** (2.3354) | 0.0102*** (3.0104) | 0.0134*** (3.3356) | 0.0189*** (4.0908) |
lnHC | 0.0146*** (4.4436) | 0.0325*** (3.5762) | 0.1546*** (5.6673) | 0.1352*** (6.2235) | 0.1653*** (4.3312) | 0.1431*** (6.7742) | 0.0103*** (4.3452) | 0.0123*** (3.9978) |
lnTC | 0.0125* (2.0104) | 0.0127* (1.7894) | 0.0462** (2.4674) | 0.0501** (2.3378) | 0.0499** (2.5236) | 0.0388** (2.2986) | 0.0097 (0.2638) | 0.0069 (0.7773) |
ρ | 0.3212*** (4.5534) | 0.2987*** (2.9890) | 0.1957*** (3.4563) | 0.2986*** (3.6675) | 0.2135*** (4.0908) | 0.2653*** (4.3356) | 0.3326*** (2.9909) | 0.3673*** (3.5647) |
η1 | 0.0783*** (11.2132) | 0.0706*** (10.2374) | 0.0771*** (8.3537) | 0.0652*** (8.2294) | 0.0661*** (2.6387) | 0.0581** (2.0584) | 0.0633*** (2.3337) | 0.0573** (1.9794) |
η2 | 0.0491*** (8.1109) | 0.0515*** (8.3183) | 0.0362*** (6.9226) | 0.0337*** (6.1081) | 0.0307*** (5.4508) | 0.0309*** (5.3209) | 0.0214** (2.0976) | 0.0198** (1.9932) |
R | 0.4126 | 0.3018 | 0.4673 | 0.3362 | 0.5126 | 0.3980 | 0.4997 | 0.3768 |
Adjust R | 0.3879 | 0.2243 | 0.4252 | 0.2997 | 0.4682 | 0.3256 | 0.4679 | 0.3120 |
Log L | 997.8767 | 1096.0095 | 1151.6673 | 1289.0094 | 1075.3326 | 1301.0678 | 1276.7786 | 1356.7892 |
Table 4 Estimation results by region of the sample space Dobbin model (SDM) of producer services agglomeration affecting urban productivity
Variable | East | Central | Northeast | West | ||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | |
Constant | 0.1125 | 0.3116 | 0.4215 | 0.2341 | ||||
lnSP | 0.0985** (1.9968) | 0.1042* (1.7893) | 0.0796** (2.2675) | 0.0594** (2.3528) | 0.0690* (1.9907) | 0.0598* (2.1785) | 0.0694 (0.6894) | 0.1147 (1.1253) |
lnDV | 0.0396*** (4.1163) | 0.0476*** (3.3014) | 0.0795*** (3.2425) | 0.0586*** (3.3153) | 0.0677*** (2.9564) | 0.0821*** (2.9432) | 0.1452*** (7.7765) | 0.1514*** (6.8978) |
lnK | 0.0442 (1.2157) | 0.0336 (1.1098) | 0.4041** (2.3217) | 0.1654 (0.9876) | 0.4037** (2.0427) | 0.2178 (0.7976) | 0.2564*** (6.5371) | 0.1986 (0.5387) |
lnL | 0.6394*** (3.8475) | 0.5544** (2.0638) | 0.2626 (1.0495) | 0.2511 -1.5633) | 0.2494 (1.0436) | 0.26775 (1.6344) | 0.01008 (1.03941) | 0.01071 (0.60579) |
lnMS | 0.1524*** (5.9876) | 0.1165*** (3.3765) | 0.0578 (0.0958) | 0.0367** (2.1573) | 0.0648 (1.0987) | 0.0674** (2.1164) | 0.0018 (0.0768) | 0.0016 (0.0687) |
lnTRI | -0.0012 (-0.2154) | -0.0016 (-1.0382) | -0.0143 (-1.1674) | -0.198 (-1.0436) | -0.0095 (-0.7896) | -0.0185 (-1.2364) | 0.2114** (2.2171) | 0.1879** (2.3246) |
lnFDI | 0.0123** (1.9987) | 0.0063*** (3.3365) | 0.0065*** (2.3327) | 0.0127*** (5.4437) | 0.0138*** (2.3354) | 0.0102*** (3.0104) | 0.0134*** (3.3356) | 0.0189*** (4.0908) |
lnHC | 0.0146*** (4.4436) | 0.0325*** (3.5762) | 0.1546*** (5.6673) | 0.1352*** (6.2235) | 0.1653*** (4.3312) | 0.1431*** (6.7742) | 0.0103*** (4.3452) | 0.0123*** (3.9978) |
lnTC | 0.0125* (2.0104) | 0.0127* (1.7894) | 0.0462** (2.4674) | 0.0501** (2.3378) | 0.0499** (2.5236) | 0.0388** (2.2986) | 0.0097 (0.2638) | 0.0069 (0.7773) |
ρ | 0.3212*** (4.5534) | 0.2987*** (2.9890) | 0.1957*** (3.4563) | 0.2986*** (3.6675) | 0.2135*** (4.0908) | 0.2653*** (4.3356) | 0.3326*** (2.9909) | 0.3673*** (3.5647) |
η1 | 0.0783*** (11.2132) | 0.0706*** (10.2374) | 0.0771*** (8.3537) | 0.0652*** (8.2294) | 0.0661*** (2.6387) | 0.0581** (2.0584) | 0.0633*** (2.3337) | 0.0573** (1.9794) |
η2 | 0.0491*** (8.1109) | 0.0515*** (8.3183) | 0.0362*** (6.9226) | 0.0337*** (6.1081) | 0.0307*** (5.4508) | 0.0309*** (5.3209) | 0.0214** (2.0976) | 0.0198** (1.9932) |
R | 0.4126 | 0.3018 | 0.4673 | 0.3362 | 0.5126 | 0.3980 | 0.4997 | 0.3768 |
Adjust R | 0.3879 | 0.2243 | 0.4252 | 0.2997 | 0.4682 | 0.3256 | 0.4679 | 0.3120 |
Log L | 997.8767 | 1096.0095 | 1151.6673 | 1289.0094 | 1075.3326 | 1301.0678 | 1276.7786 | 1356.7892 |
Variables | lnSP (1) | lnDV (2) | lnCP (after excluding outliers) (3) | lnCP (after deleting cities directly under the central government and autonomous regions) (4) | lnTFP (5) |
---|---|---|---|---|---|
L.lnCP | -0.007 (-0.004) | -0.008 (-0.004) | |||
lnSP | 0.0321** (1.9705) | ||||
lnDV | 0.0097* (1.7201) | ||||
lnSP (after excluding outliers) | 0.006 (0.004) | ||||
lnDV (after excluding outliers) | 0.016 (0.011) | ||||
lnSP (after deleting cities directly under the central government and autonomous regions) | 0.035* (1.693) | ||||
lnDV (after deleting cities directly under the central government and autonomous regions) | 0.041* (1.884) | ||||
R | 0.23 | 0.31 | 0.39 | 0.24 | 0.28 |
Number of samples | 3146 | 3146 | 2856 | 2695 | 3146 |
Table 5 Robustness test of empirical results
Variables | lnSP (1) | lnDV (2) | lnCP (after excluding outliers) (3) | lnCP (after deleting cities directly under the central government and autonomous regions) (4) | lnTFP (5) |
---|---|---|---|---|---|
L.lnCP | -0.007 (-0.004) | -0.008 (-0.004) | |||
lnSP | 0.0321** (1.9705) | ||||
lnDV | 0.0097* (1.7201) | ||||
lnSP (after excluding outliers) | 0.006 (0.004) | ||||
lnDV (after excluding outliers) | 0.016 (0.011) | ||||
lnSP (after deleting cities directly under the central government and autonomous regions) | 0.035* (1.693) | ||||
lnDV (after deleting cities directly under the central government and autonomous regions) | 0.041* (1.884) | ||||
R | 0.23 | 0.31 | 0.39 | 0.24 | 0.28 |
Number of samples | 3146 | 3146 | 2856 | 2695 | 3146 |
Variable | lnSPt-1 | lnDVt-1 | lnSPt-2 | lnDVt-2 | lnSPt-3 | lnDVt-3 | lnSPt-4 | lnDVt-4 | lnSPt-5 | lnDVt-5 | lnSPt-6 | lnDVt-6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
lnCP | 0.016 (0.041) | 0.009 (0.033) | 0.014 (0.037) | 0.011 (0.062) | 0.014 (0.077) | 0.012 (0.069) | 0.017 (0.045) | 0.011 (0.043) | 0.017 (0.053) | 0.013 (0.057) | 0.019 (0.080) | 0.013 (0.064) |
Table 6 Common trend test of producer service agglomeration and urban productivity change
Variable | lnSPt-1 | lnDVt-1 | lnSPt-2 | lnDVt-2 | lnSPt-3 | lnDVt-3 | lnSPt-4 | lnDVt-4 | lnSPt-5 | lnDVt-5 | lnSPt-6 | lnDVt-6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
lnCP | 0.016 (0.041) | 0.009 (0.033) | 0.014 (0.037) | 0.011 (0.062) | 0.014 (0.077) | 0.012 (0.069) | 0.017 (0.045) | 0.011 (0.043) | 0.017 (0.053) | 0.013 (0.057) | 0.019 (0.080) | 0.013 (0.064) |
[1] | Andersson M. 2006. Co-location of manufacturing and producer service:A simultaneous equation approach. Working paper series in economics and institutions of innovation. London, UK: Routledge Press. |
[2] | Anselin L. 1988. Spatial econometrics: Methods and models. Dordrecht, Netherlands: Kluwer Academic Publishers: 32-45. |
[3] | Chen R. 2021. Study on the impact of producer services agglomeration and city size on urban productivity. Enterprise Economics, (8): 138-146. (in Chinese) |
[4] | Chen S Y, Zeng L, Li W H. 2017. Local government competition, land transfer and urban productivity—Empirical evidence from 281 prefecture level cities in China. Financial Science, (7): 108-121. (in Chinese) |
[5] | Chen X F, Zhou J J. 2020. Producer services agglomeration, spatial spillover and urban green total factor productivity—Empirical evidence from urban agglomeration in the Yangtze River Delta. Economic Longitude and Latitude, (4): 89-98. (in Chinese) |
[6] | Combes P P. 2000. Economic structure and local growth: France, 1984-1993. Journal of Urban Economics, 47: 329-355. |
[7] | Elhorst J. 2010. Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1): 9-28. |
[8] | Ezcurra R, Pascual M,Rapun. 2006. Regional specialization in the European Union. Regional Studies, 40(6): 601-616. |
[9] | Glaeser E, Kalial H D, et al. 1992. Growth in cities. Journal of Political Economy, 100(6): 1127-1152. |
[10] | Hou X S, Zhang Z Y, et al. 2014. Research on the growth effect and action path of China’s economic structure. World Economy, (5): 88-111. (in Chinese) |
[11] | Hu B, Yu Z R. 2021. Research on the heterogeneous impact of local fiscal pressure on urban productivity: An analysis based on the background of new urbanization. Financial Research, 47(6): 139-153. (in Chinese) |
[12] | Jacobs J. 1969. The economy of cities. New York, USA: Vintage Press: 45-62. |
[13] | James P L, Kelly P R. 2009. Introduction to spatial econometrics. Boca Raton, USA: CRC Press: 513-514. |
[14] | Ke S Z, Zhao Y. 2014. Industrial structure, city size and urban productivity in China. Economic Research, 4: 76-88. (in Chinese) |
[15] | Li J K, Zhang T B. 2018. Study on the hierarchical impact and asymmetric effect of FDI in China’s urban productivity growth. Industrial Economic Research, 95(4): 18-29. (in Chinese) |
[16] | Li R R. 2019. Producer services agglomeration and urban productivity—Differentiated learning effect, selection effect and classification effect. Chanjing Review, 10(1): 22-37. (in Chinese) |
[17] | Liu P L, Song Z. 2007. Performance of China’s service and manufacturing industry enterprises: An empirical analysis based on China’s first economic census. Economic Research, (1): 47-58. (in Chinese) |
[18] | Liu X W. 2019. Service industry agglomeration, urban innovation and urban productivity. Journal of Shanxi University of Finance and Economics, 41(7): 62-76. (in Chinese) |
[19] | LV K B, Ren Z C. 2017. New demographic dividend, development of producer services and urban productivity—An empirical study based on urban agglomeration in the Yangtze River Delta. Nanjing Social Sciences, (1): 31-38. (in Chinese) |
[20] | Marshall A. 1961. Principle of economics: An introductory volume. London, UK: Macmillan Press: 89-105. |
[21] | Xi P H, Liang R B, Xie Z F, et al. 2017. Fiscal pressure, overcapacity and supply side Reform. Economic Research, (9): 88-104. (in Chinese) |
[22] | Xu Q Y. 2010. An empirical study on the interactive relationship between industry and service industry in Shanghai based on VAR model. Shanghai Economic Research, (2): 90-97. (in Chinese) |
[23] | Zhang C. 2018. Population density, human capital and urban productivity stratification—An empirical study based on Chinese urban data. Journal of Humanities, (2): 43-52. (in Chinese) |
[24] | Zhang J, Wu G Y, Zhang J P. 2004. Estimation of China’s inter provincial physical capital stock: 1952-2000. Economic Research, (10): 35-44. (in Chinese) |
[25] | Zhang S Q, Zhang P. 2017. The impact of innovation factor agglomeration and public expenditure on urban productivity—An empirical study based on the spatial panel of Beijing-Tianjin-Hebei-Mongolia. East China Economic Management, 31(11): 65-70. (in Chinese) |
[26] | Zhang S Y, Wang C X, Ren Y J. 2019. Spatial spillover effect of producer services agglomeration on green total factor productivity. Soft Science, (11): 11-15, 21. (in Chinese) |
[27] | Zhou Y, Tan G R. 2016. Research on the impact of producer services agglomeration on urban land intensive use from a spatial perspective. China Land Science, 30(10): 37-46. (in Chinese) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||