Journal of Resources and Ecology ›› 2022, Vol. 13 ›› Issue (6): 1152-1164.DOI: 10.5814/j.issn.1674-764x.2022.06.019
• Animal Ecology • Previous Articles
WANG Maoqiu1(), HU Yang1, HE Ning1, WU Mingxuan1, WU Pengling1, WANG Qinyi1, ZHANG Bolun1, ZHANG Shengle1, GAO Meihua1, FANG Shubo1,2,*(
)
Received:
2021-10-08
Accepted:
2022-03-20
Online:
2022-11-30
Published:
2022-10-12
Contact:
FANG Shubo
About author:
WANG Maoqiu, E-mail: wangmaoqiu@yeah.net
Supported by:
WANG Maoqiu, HU Yang, HE Ning, WU Mingxuan, WU Pengling, WANG Qinyi, ZHANG Bolun, ZHANG Shengle, GAO Meihua, FANG Shubo. The Spatio-temporal Patterns of Macro Benthos Functional Groups and the Associated Factors Affecting Them after Wetland Restoration[J]. Journal of Resources and Ecology, 2022, 13(6): 1152-1164.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2022.06.019
Functional groups | Description | Species found in the samples |
---|---|---|
CMJ | Jawed mobile carnivore | Palaemon modestus Heller, |
CMX | Mobile carnivore | Cerebratulina sp. |
CDJ | Jawed semi-mobile carnivore | Gnorimosphaeroma rayi Hoestlandt, |
FMJ | Jawed mobile suspensivore | Hemileucon bidentatus Liu & Liu, |
FMX | Mobile suspensivore | Perioculodes meridichinensis Hirayama, |
FDX | Semi-mobile suspensivore | Corbicula fluminea O.F. Müller, |
SMJ | Jawed mobile surface detritivore | Pyrhila pisum De Haan, |
SDX | Semi-mobile surface detritivore | Assiminea J. Fleming, |
BMJ | Jawed mobile subsurface detritivore | Helice tientsinensis Rathbun, |
BMX | Tentaculate semi-mobile subsurface detritivore | Heteromastus filiformis Claparède, |
HDX | Semi-mobile herbivore | Stenothyra glabra A. Adams, |
FSX | Tessile suspensivore | None |
FST | Tentaculate sessile suspensivore | None |
SST | Tentaculate sessile surface detritivore | None |
SMX | Mobile surface detritivore | None |
Table 1 The functional group classification of macro benthos
Functional groups | Description | Species found in the samples |
---|---|---|
CMJ | Jawed mobile carnivore | Palaemon modestus Heller, |
CMX | Mobile carnivore | Cerebratulina sp. |
CDJ | Jawed semi-mobile carnivore | Gnorimosphaeroma rayi Hoestlandt, |
FMJ | Jawed mobile suspensivore | Hemileucon bidentatus Liu & Liu, |
FMX | Mobile suspensivore | Perioculodes meridichinensis Hirayama, |
FDX | Semi-mobile suspensivore | Corbicula fluminea O.F. Müller, |
SMJ | Jawed mobile surface detritivore | Pyrhila pisum De Haan, |
SDX | Semi-mobile surface detritivore | Assiminea J. Fleming, |
BMJ | Jawed mobile subsurface detritivore | Helice tientsinensis Rathbun, |
BMX | Tentaculate semi-mobile subsurface detritivore | Heteromastus filiformis Claparède, |
HDX | Semi-mobile herbivore | Stenothyra glabra A. Adams, |
FSX | Tessile suspensivore | None |
FST | Tentaculate sessile suspensivore | None |
SST | Tentaculate sessile surface detritivore | None |
SMX | Mobile surface detritivore | None |
Fig. 3 Changes in the relative abundance of functional groups during the year Note: FDX dominated in spring. SDX dominated in summer. CMJ dominated in autumn and winter. BMJ, jawed mobile subsurface detritivore; CDJ, jawed semi-mobile carnivore; CMJ, jawed mobile carnivore; CMX, mobile carnivore; FDX, semi-mobile suspensivore; FMJ, jawed mobile suspensivore; FMX, mobile suspensivore; HDX, semi-mobile herbivore; SDX, semi-mobile surface detritivore; SMJ, jawed mobile surface detritivore; SMX, mobile surface detritivore.
Fig. 4 Changes in the relative frequency of functional groups throughout the year Note: BMJ: jawed mobile subsurface detritivore; CDJ: jawed semi-mobile carnivore; CMJ: jawed mobile carnivore; CMX: mobile carnivore; FDX: semi-mobile suspensivore; FMJ: jawed mobile suspensivore; FMX: mobile suspensivore; HDX: semi-mobile herbivore; SDX: semi-mobile surface detritivore; SMJ: jawed mobile surface detritivore. SMX: mobile surface detritivore.
Month | Dependent Variable | Models | Independent Variable | Adjusted R2 | Standard Coefficient B | P |
---|---|---|---|---|---|---|
April | CMJ | 1 | EL | 0.849 | ‒0.949 | 0.051 |
2 | EL | 0.998 | ‒1.368* | 0.022 | ||
PD | 0.998 | 0.525 | 0.058 | |||
FDX | 1 | PZ | 0.376 | ‒0.658* | 0.020 | |
SMJ | 1 | MC | 0.93 | 0.972** | 0.001 | |
SDX | 1 | OC | 0.967 | 0.986** | 0.000 | |
July | CMJ | 1 | PZ | 0.8 | 0.917** | 0.010 |
2 | PZ | 0.962 | 1.072** | 0.001 | ||
TP | 0.962 | ‒0.401* | 0.024 | |||
SDX | 1 | MC | 0.361 | 0.664 | 0.051 | |
2 | MC | 0.59 | 1.158* | 0.011 | ||
PCD | 0.59 | ‒0.704 | 0.069 | |||
3 | MC | 0.821 | 1.085** | 0.004 | ||
PCD | 0.821 | ‒1.018** | 0.008 | |||
PZ | 0.821 | ‒0.576* | 0.032 | |||
BMJ | 1 | PZ | 0.537 | ‒0.793 | 0.060 | |
HDX | 1 | PH | 0.687 | 0.875 | 0.052 | |
2 | PH | 0.948 | 1.143* | 0.013 | ||
TP | 0.948 | ‒0.531 | 0.057 | |||
3 | PH | 0.999 | 1.214* | 0.011 | ||
TP | 0.999 | ‒0.666* | 0.024 | |||
MC | 0.999 | 0.198 | 0.069 | |||
October | CMJ | 1 | PH | 0.708 | ‒0.870* | 0.011 |
SDX | 1 | PD | 0.363 | 0.685 | 0.090 | |
BMX | 1 | TP | 0.863 | ‒0.947* | 0.014 | |
2 | TP | 0.997 | ‒0.82** | 0.001 | ||
PZ | 0.997 | ‒0.342** | 0.008 | |||
HDX | 1 | TP | 0.863 | ‒0.947* | 0.014 | |
2 | TP | 0.997 | ‒0.820** | 0.001 | ||
PZ | 0.997 | ‒0.342** | 0.008 | |||
January | CMJ | 1 | SS | 0.364 | 0.686 | 0.089 |
2 | SS | 0.633 | 0.749* | 0.040 | ||
TP | 0.633 | 0.538 | 0.097 | |||
SDX | 1 | MC | 0.695 | 0.864* | 0.012 | |
BMJ | 1 | MC | . | 1 | . | |
HDX | 1 | OC | 0.861 | ‒0.946* | 0.015 | |
FDX | 1 | OC | 0.323 | 0.631* | 0.050 |
Table 2 The regression analysis of macro benthos functional groups
Month | Dependent Variable | Models | Independent Variable | Adjusted R2 | Standard Coefficient B | P |
---|---|---|---|---|---|---|
April | CMJ | 1 | EL | 0.849 | ‒0.949 | 0.051 |
2 | EL | 0.998 | ‒1.368* | 0.022 | ||
PD | 0.998 | 0.525 | 0.058 | |||
FDX | 1 | PZ | 0.376 | ‒0.658* | 0.020 | |
SMJ | 1 | MC | 0.93 | 0.972** | 0.001 | |
SDX | 1 | OC | 0.967 | 0.986** | 0.000 | |
July | CMJ | 1 | PZ | 0.8 | 0.917** | 0.010 |
2 | PZ | 0.962 | 1.072** | 0.001 | ||
TP | 0.962 | ‒0.401* | 0.024 | |||
SDX | 1 | MC | 0.361 | 0.664 | 0.051 | |
2 | MC | 0.59 | 1.158* | 0.011 | ||
PCD | 0.59 | ‒0.704 | 0.069 | |||
3 | MC | 0.821 | 1.085** | 0.004 | ||
PCD | 0.821 | ‒1.018** | 0.008 | |||
PZ | 0.821 | ‒0.576* | 0.032 | |||
BMJ | 1 | PZ | 0.537 | ‒0.793 | 0.060 | |
HDX | 1 | PH | 0.687 | 0.875 | 0.052 | |
2 | PH | 0.948 | 1.143* | 0.013 | ||
TP | 0.948 | ‒0.531 | 0.057 | |||
3 | PH | 0.999 | 1.214* | 0.011 | ||
TP | 0.999 | ‒0.666* | 0.024 | |||
MC | 0.999 | 0.198 | 0.069 | |||
October | CMJ | 1 | PH | 0.708 | ‒0.870* | 0.011 |
SDX | 1 | PD | 0.363 | 0.685 | 0.090 | |
BMX | 1 | TP | 0.863 | ‒0.947* | 0.014 | |
2 | TP | 0.997 | ‒0.82** | 0.001 | ||
PZ | 0.997 | ‒0.342** | 0.008 | |||
HDX | 1 | TP | 0.863 | ‒0.947* | 0.014 | |
2 | TP | 0.997 | ‒0.820** | 0.001 | ||
PZ | 0.997 | ‒0.342** | 0.008 | |||
January | CMJ | 1 | SS | 0.364 | 0.686 | 0.089 |
2 | SS | 0.633 | 0.749* | 0.040 | ||
TP | 0.633 | 0.538 | 0.097 | |||
SDX | 1 | MC | 0.695 | 0.864* | 0.012 | |
BMJ | 1 | MC | . | 1 | . | |
HDX | 1 | OC | 0.861 | ‒0.946* | 0.015 | |
FDX | 1 | OC | 0.323 | 0.631* | 0.050 |
Abbreviation | Full name | Abbreviation | Full name |
---|---|---|---|
BI | biogeomorphological index | FST | tentaculate sessile suspensivore |
BMJ | jawed mobile subsurface detritivore | FSX | tessile suspensivore |
BMX | tentaculate semi-mobile subsurface detritivore | HDX | semi-mobile herbivore |
CDJ | jawed semi-mobile carnivore | PCA | principal component analysis |
CMJ | jawed mobile carnivore | SDX | semi-mobile surface detritivore |
CMX | mobile carnivore | SMJ | jawed mobile surface detritivore |
FDX | semi-mobile suspensivore | SMX | mobile surface detritivore |
FDX | semi-mobile suspensivore | SST | tentaculate sessile surface detritivore |
FMJ | jawed mobile suspensivore | YRE | the Yangtze River Estuary |
FMX | mobile suspensivore |
Appendix: The abbreviation list
Abbreviation | Full name | Abbreviation | Full name |
---|---|---|---|
BI | biogeomorphological index | FST | tentaculate sessile suspensivore |
BMJ | jawed mobile subsurface detritivore | FSX | tessile suspensivore |
BMX | tentaculate semi-mobile subsurface detritivore | HDX | semi-mobile herbivore |
CDJ | jawed semi-mobile carnivore | PCA | principal component analysis |
CMJ | jawed mobile carnivore | SDX | semi-mobile surface detritivore |
CMX | mobile carnivore | SMJ | jawed mobile surface detritivore |
FDX | semi-mobile suspensivore | SMX | mobile surface detritivore |
FDX | semi-mobile suspensivore | SST | tentaculate sessile surface detritivore |
FMJ | jawed mobile suspensivore | YRE | the Yangtze River Estuary |
FMX | mobile suspensivore |
[1] | Alurralde G, Fuentes V L, Maggioni T, et al. 2019. Role of suspension feeders in Antarctic pelagic-benthic coupling: Trophic ecology and potential carbon sinks under climate change. Marine Environmental Research, 152: 1-15. |
[2] |
Back C L, Holomuzki J R, Klarer D M, et al. 2012. Herbiciding invasive reed: Indirect effects on habitat conditions and snail-algal assemblages one year post-application. Wetlands Ecology and Management, 20(5): 419-431.
DOI URL |
[3] | Balke T, Klaassen P C, Garbutt A, et al. 2012. Conditional outcome of ecosystem engineering: A case study on tussocks of the salt marsh pioneer Spartina anglica. Geomorphology, 153: 232-238. |
[4] |
Bell S S, Watzin M C, Coull B C. 1978. Biogenic structure and its effect on the spatial heterogeneity of meiofauna in a salt marsh. Journal of Experimental Marine Biology and Ecology, 35(2): 99-107.
DOI URL |
[5] |
Benjamin K, Inmaculada F, Lrich S U, et al. 2013. Trophodynamics and functional feeding groups of North Sea fauna: A combined stable isotope and fatty acid approach. Biogeochemistry, 113(1): 189-212.
DOI URL |
[6] |
Bremner J, Rogers S I, Frid C L J. 2006. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecological Indicators, 6(3): 609-622.
DOI URL |
[7] |
Butler D R, Sawyer C F. 2012. Introduction to the special issue-Zoogeomorphology and ecosystem engineering. Geomorphology, 157-158: 1-5. DOI: 10.1016/j.geomorph.2012.02.027.
DOI URL |
[8] |
Campbell M D, Hall S G. 2019. Hydrodynamic effects on oyster aquaculture systems: A review. Reviews in Aquaculture, 11(3): 896-906.
DOI |
[9] |
Cardinale B J, Srivastava D S, Emmett D J, et al. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443(7114): 989-992.
DOI URL |
[10] |
Chen H, Wang D Q, Chen Z L, et al. 2005. The variation of sediments organic carbon content in Chongming east tidal flat during Scirpus mariqueter growing stage. Journal of Geographical Sciences, 15(4): 500-508.
DOI |
[11] | Chen Y N, Chen L Z, Cai T L, et al. 2020. Advances in biogeomorphology in coastal wetlands and its application in ecological restoration. Oceanologia et Limnologia Sinica, 51(5): 1055-1065. (in Chinese) |
[12] | Chu Z H. 2021. Study on the change of soil water content and temperature. Modern Agricuture Research, 27(4): 23-24, 153. (in Chinese) |
[13] |
Cocito S. 2004. Bioconstruction and biodiversity: Their mutual influence. Scientia Marina, 68(S1): 137-144.
DOI URL |
[14] | Collin A, Archambault P, Long B. 2011. Predicting species diversity of benthic communities within turbid nearshore using full-waveform bathymetric LiDAR and machine learners. Plos One, 6(6): 1-16. |
[15] |
Cui L F, Yuan L, Ge Z M, et al. 2020. The impacts of biotic and abiotic interaction on the spatial pattern of salt marshes in the Yangtze Estuary, China. Estuarine Coastal and Shelf Science, 238(3): 106717. DOI: 10.1016/j.ecss.2020.106717.
DOI URL |
[16] |
Ding W H, Jiang J Y, Li X Z, et al. 2015. Spatial distribution of species and influencing factors across salt marsh in southern Chongming Dongtan. Chinese Journal of Plant Ecology, 39(7): 704-716. (in Chinese)
DOI URL |
[17] |
Dong L L, Li X P, Liu X C, et al. 2017. Determining the effects of major cations (K+, Na+, Ca2+, Mg2+) and pH on Scirpus mariqueter to assess the heavy metal biotoxicity of a tidal flat ecosystem. Journal of Coastal Research, 33(5): 1086-1094.
DOI URL |
[18] |
Eichel J, Corenblit D, Dikau R. 2016. Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: A biogeomorphic feedback window. Earth Surface Processes and Landforms, 41(3): 406-419.
DOI URL |
[19] |
Gascon S, Boix D, Sala J, et al. 2008. Relation between macroinvertebrate life strategies and habitat traits in Mediterranean salt marsh ponds (Emporda wetlands, NE Iberian Peninsula). Hydrobiologia, 597(1): 71-83.
DOI URL |
[20] | Guan Q, Liu J P, Wu H T, et al. 2016. Research progress on the ecology of natural wetland snails (Mollusca Gastropoda) in China. Acta Ecologica Sinica, 36(9): 2471-2481. (in Chinese) |
[21] | Guo Y. 1994. An approach to biogeomorphology. Journal of Chongqing Teachers College (Natural Science Edition), 11(3): 88-94. (in Chinese) |
[22] | Han J, Song M M, Zhang J, et al. 2019. Selective adaptations of macrobenthic functional feeding groups in the Hunhe River Basin. Acta Ecologica Sinica, 39(6): 2013-2020. (in Chinese) |
[23] | He L Z, Shou L, Liao Y B, et al. 2020. The succession of macrobenthic functional groups in Changjiang River Estuary and its adjacent waters. Oceanologia Et Limnologia Sinica, 51(3): 477-483. (in Chinese) |
[24] |
Hou L J, Liu M, Ou D N, et al. 2008. Influences of the macrophyte (Scirpus mariqueter) on phosphorous geochemical properties in the intertidal marsh of the Yangtze Estuary. Journal of Geophysical Research: Biogeosciences, 113(G4). DOI: 10.1029/2008JG000780.
DOI |
[25] | Huang Y, Du T, Yang S P. 2008. Preliminary studies on ecological habit of Tapes dorsatus. Fisheries Science, 27(4): 175-178. (in Chinese) |
[26] | Jayaraj K A, Jayalakshmi K V, Saraladevi K. 2007. Influence of environmental properties on macrobenthos in the northwest Indian shelf. Environmental Monitoring & Assessment, 127(1-3): 459-475. |
[27] | Jiang R J, Zhang L L, Xu K D, et al. 2019. Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province. Biodiversity Science, 27: 1330-1338. (in Chinese) |
[28] |
Keijsers J G S, De G A V, Riksen M J P M. 2015. Vegetation and sedimentation on coastal foredunes. Geomorphology, 228: 723-734.
DOI URL |
[29] | Kent M, Owen N W, Dale P, et al. 2001. Studies of vegetation burial: A focus for biogeography and biogeomorphology? Progress in Physical Geography: Earth and Environment, 25(4): 455-482. |
[30] | Leitner P, Hauer C, Ofenbock T, et al. 2015. Fine sediment deposition affects biodiversity and density of benthic macroinvertebrates: A case study in the freshwater Pearl Mussel River Waldaist (Upper Austria). Limnologica, 50: 54-57. |
[31] |
Li C W, Tao Y D, Zhao M, et al. 2018. Soil characteristics and their potential thresholds associated with Scirpus mariqueter distribution on a reclaimed wetland coast. Journal of Coastal Conservation, 22(6): 1107-1116.
DOI URL |
[32] | Li J S, Wang Y P, Du J B, et al. 2021a. Effects of Meretrix meretrix on sediment thresholds of erosion and deposition on an intertidal flat. Ecohydrology & Hydrobiology, 21(1): 129-141. |
[33] |
Li J S, Chen X D, Townend I, et al. 2021b. A comparison study on the sediment flocculation process between a bare tidal flat and a clam aquaculture mudflat: The important role of sediment concentration and biological processes. Marine Geology, 434: 106443. DOI: 10.1016/j.margeo.2021.106443.
DOI URL |
[34] |
Li N, Li B, Nie M, et al. 2020. Effects of exotic spartina alterniflora on saltmarsh nitrogen removal in the Yangtze River Estuary, China. Journal of Cleaner Production, 271: 122557. DOI: 10.1016/j.jclepro.2020.122557.
DOI URL |
[35] | Lin L Y, Tong C F, Li X Z. 2015. Classification and distribution characteristics of benthic macroinvertebrate functional groups in the saline algae of Chongming Dongtan. Chinese Journal of Ecology, 34(8): 2229-2237. (in Chinese) |
[36] | Liu K, Lin H S, He X B, et al. 2016. Functional feeding groups of macrozoobenthos and their relationships to environmental factors in Xiamen coastal waters. Acta Oceanologica Sinica, 38(12): 95-105. (in Chinese) |
[37] | Liu M H, Meng Y, Cao J, et al. 2019. Functional traits of macroinvertebrates in Naolihe Wetland. Journal of Northeast Forestry University, 47(1): 76-82. (in Chinese) |
[38] | Liu R F, Zhang L H, Lin X, et al. 2013. Denitrification potential of Cyperus malaccensis marsh soil in Minjiang River estuary of Esat China. Chinese Journal of Ecology, 32(11): 2865-2870. (in Chinese) |
[39] | Liu Y Y, Wang S, Li S, et al. 2017. Advances in molecular ecology on microbial functional genes of carbon cycle. Microbiology China, 44(7): 1676-1689. (in Chinese) |
[40] |
Lv W W, Ma C A, Yu J, et al. 2013. Macrobenthic functional groups at the reclamation and natural tidal flats of Hengsha East Shoal the estuary of Changjiang River. Acta Ecologica Sinica, 33(21): 6825-6833. (in Chinese)
DOI URL |
[41] | Ma C A. Xu L T, Tian W, et al. 2011. Species composition, quantity distribution and seasonal variation of macrobenthos in east Nanhui tidal flat. Journal of Fudan University (Natural Science), 50(3): 274-281. (in Chinese) |
[42] | Mei X Y, Zhang X F. 2007. Carbon storage and fixation function of Scirpus mariqueter in Changjiang River Estuary: A case study of Chongming Dongtan Wetland. Journal of Agro-Environment Science, 26(1): 360-363. (in Chinese) |
[43] |
Nagelkerken I, Munday P L. 2016. Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Global Change Biology, 22(3): 974-989.
DOI PMID |
[44] | Ni G. 2013. Studies on the sensitive limiting factors of competition between exotic invaive plant Spartina alterniflora and Scirpus mariqueter. Diss., Shanghai, China: Shanghai University. (in Chinese) |
[45] |
Nickerson Z L, Mortazavi B, Atkinson C L. 2019. Using functional traits to assess the influence of burrowing bivalves on nitrogen-removal in streams. Biogeochemistry, 146(2): 125-143.
DOI |
[46] |
Qiu D D, Cui B S, Yan J G, et al. 2019. Effect of burrowing crabs on retention and accumulation of soil carbon and nitrogen in an intertidal salt marsh. Journal of Sea Research, 154: 101808. DOI: 10.1016/j.seares.2019.101808.
DOI URL |
[47] |
Qiu D D, Xu M, Yan J G, et al. 2021. Biogeomorphological processes and structures facilitate seedling establishment and distribution of annual plants: Implications for coastal restoration. Science of the Total Environment, 756: 143842. DOI: 10.1016/j.scitotenv.2020.143842.
DOI URL |
[48] |
Schwarz C, Bouma T J, Zhang L Q, et al. 2015. Interactions between plant traits and sediment characteristics influencing species establishment and scale-dependent feedbacks in salt marsh ecosystems. Geomorphology, 250: 298-307.
DOI URL |
[49] | Sheng X Q, Chen Y Q, Quan W M, et al. 2007. Restoration effect of benthos on the ecological environment of the Changjiang River Estuary. Journal of Fisheries of China, 31(2): 199-203. (in Chinese) |
[50] |
Shi B W, Pratolongo P D, Du Y F, et al. 2020. Influence of macrobenthos (Meretrix meretrix Linnaeus) on erosion-accretion processes in intertidal flats: A case study from a cultivation zone. Journal of Geophysical Research: Biogeosciences, 125(1). DOI: 10.1029/2019JG005345.
DOI |
[51] | Shi B W, Wang Y P, Yang Y, et al. 2015. Determination of critical shear stresses for erosion and deposition based on in situ measurements of currents and waves over an intertidal mudflat. Journal of Coastal Research, 31(6): 1344-1356. |
[52] | Shun S C, Cai Y L, Liu H. 2001. Biomass allocation of Scirus mariqueter along an elevational gradient in a salt marsh of the Yangtse River Estuary. Acta Botanica Sinica, (2): 178-185. |
[53] |
Spencer T, Viles H. 2002. Bioconstruction, bioerosion and disturbance on tropical coasts: Coral reefs and rocky limestone shores. Geomorphology, 48(1-3): 23-50.
DOI URL |
[54] |
Su P, Wang X X, Lin Q D, et al. 2019. Variability in macroinvertebrate community structure and its response to ecological factors of the Weihe River Basin, China. Ecological Engineering, 140: 105595. DOI: 10.1016/j.ecoleng.2019.105595.
DOI URL |
[55] | Tao Y D, Zhong S C, Li C W, et al. 2018. A study on the effect of ecological restoration and reconstruction of Scirpus mariqueter comminuty: A case of Nanhui coasts. Transactions of Oceanology and Limnology, (5): 40-49. (in Chinese) |
[56] |
Vacchi M, de Falco G, Simeone S, et al. 2017. Biogeomorphology of the Mediterranean Posidonia oceanica seagrass meadows. Earth Surface Processes and Landforms, 42(1): 42-54.
DOI URL |
[57] |
Veiga P, Torres A C, Aneiros F, et al. 2016. Consistent patterns of variation in macrobenthic assemblages and environmental variables over multiple spatial scales using taxonomic and functional approaches. Marine Environmental Research, 120: 191-201.
DOI PMID |
[58] | Wang M, Hong B, Zhang Y P, et al. 2015. Community structure of nektons on northern Hangzhou Bay in summer and winter. Journal of Guangdong Ocean University, 35(3): 56-62. (in Chinese) |
[59] |
Wang Q S, Feng R J, Li L, et al. 2018. Characterization of the complete mitogenome for the freshwater shrimp Exopalaemon modestus. Conservation Genetics Resources, 10(4): 805-808.
DOI URL |
[60] |
Wu M X, Hu Y, Wu P L, et al. 2020. Does soil pore water salinity or elevation influence vegetation spatial patterns along coasts? A case study of restored coastal wetlands in Nanhui, Shanghai. Wetlands, 40(6): 2691-2700.
DOI URL |
[61] |
Wu M X, Wu P L, He P M, et al. 2021. Theory of scale-dependent feedback: An experimental validation and its significance for coastal saltmarsh restoration. Science of the Total Environment, 756: 143855. DOI: 10.1016/j.scitotenv.2020.143855.
DOI URL |
[62] | Wu Z L, Wang D Q, Li Y J, et al. 2015. The contribution of Scripus mariqueter to sediment carbon storage of Chongming East Tidal Flat Wetland in Yangtze River Estuary. Acta Scientiae Circumstantiae, 35(11): 3639-3646. (in Chinese) |
[63] |
Xu Y, Li X Z, Wang H F, et al. 2016. Characteristics of a macrozoobenthic community in the sea adjacent to the Yangtze River Esuary during the wet season. Biodiversity Science, 24(7): 811-819. (in Chinese)
DOI URL |
[64] | Yan Q, Lu J J, He W S. 2007. Succession character of saltmarsh vegetations in Chongming Dongtan Wetland. Chinese Journal of Applied Ecology, 18(5): 1097-1101. (in Chinese) |
[65] | You D, Tong C F, Wu F R. 2018. Effects of sediments erosion and depositon varition on the benthic macroinvertebrate functional groups in an intertidal salt marsh of Nanhui Dongtan during the dry season Chongjiang River Estuar. Acta Oceanologica Sinica, 40(8): 63-78. (in Chinese) |
[66] | Yuan J M, Zhang H, Tang X H, et al. 2019. Macrozoobenthic functional groups intertidal zone of southern Jiangsu Province. Marine Fisheries, 41(1): 43-52. (in Chinese) |
[67] | Yuan X Z, Lu J J, Liu H. 2002. Distribution pattern and variation in the functional groups of zoobenthos in the Changjiang Estuary. Acta Ecologica Sinica, 22(12): 2054-2062. (in Chinese) |
[68] |
Zhang A G, Yuan X T, Hou W J, et al. 2016. Biodeposition, respiration, and excretion rates of an introduced clam Mercenaria mercenaria in ponds with implications for potential competition with the native clam Meretrix meretrix in Shuangtaizi Estuary, China. Chinese Journal of Oceanology and Limnology, 34(3): 467-476.
DOI URL |
[69] | Zhang T T, Gao Y, Wang S K, et al. 2018. Landscape pattern of estuarine wetland and its multi-scale effects on macrobenthos diversity. Marine Fisheries, 40(6): 679-690. (in Chinese) |
[70] | Zhao D, Liu Y, Song A H, et al. 2017. Genetic diversity of snail Bullacta exarate populations based on Mitochondrial DNACOI. Fisheries Science, 36(3): 353-358. (in Chinese) |
[71] |
Zhao L X, Xu C, Ge Z M, et al. 2019. The shaping role of self-organization: Linking vegetation patterning, plant traits and ecosystem functioning. Proceedings of the Royal Society B, 286(1900): 20182859. DOI: 10.1098/rspb.2018.2859.
DOI |
[72] | Zhong S C, Yu K F, Li C W, et al. 2020. Variation and the associated factors of benthic biodiversity in wetlands of Scipus mariqueter on remediated Nanhui coasts. Resources and Environment in the Yangtze Basin, 29(4): 889-899. (in Chinese) |
[73] | Zhou X, Ge Z M, Shi W Y, et al. 2007. Temporal and spatial fluctuation of macrobenthos community in a newly established wetland in Yangtze River estuary. Chinese Journal of Ecology, 26(3): 372-377. (in Chinese) |
[74] | Zuo Z, Chen Y Q, Cheng B X, et al. 2016. Ecological characteristics of macrobenthic communities in SFWs of different hydrophytes and their relationships with environmental factors. Acta Ecologica Sinica, 36(4): 953-960. (in Chinese) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||