Journal of Resources and Ecology ›› 2022, Vol. 13 ›› Issue (6): 1143-1151.DOI: 10.5814/j.issn.1674-764x.2022.06.018
• Animal Ecology • Previous Articles Next Articles
Godfred BEMPAH1(), Joseph K. AFRIFA2, Moses A. NARTEY3, LU Changhu4,*(
)
Received:
2021-10-15
Accepted:
2022-01-15
Online:
2022-11-30
Published:
2022-06-20
Contact:
LU Changhu
About author:
Godfred BEMPAH, E-mail: godfred.bempah@stu.ucc.edu.gh
Supported by:
Godfred BEMPAH, Joseph K. AFRIFA, Moses A. NARTEY, LU Changhu. Variations in Patch Use by Ruminant and Non-ruminant Herbivores in a Tropical Wildlife Reserve, Ghana[J]. Journal of Resources and Ecology, 2022, 13(6): 1143-1151.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2022.06.018
No. | Variables | HH | SH | DR | GC | BM | N | ADF |
---|---|---|---|---|---|---|---|---|
1 | Habitat heterogeneity (HH) | 1 | 0.54 | 0.18 | 0.34 | 0.43 | 0.24 | 0.28 |
2 | Sward height (SH) | 0.34 | 1 | 0.51 | 0.44 | 0.61 | 0.26 | 0.29 |
3 | Distance to river (DR) | ‒0.15 | ‒0.71 | 1 | ‒0.19 | 0.11 | ‒0.27 | ‒0.31 |
4 | Groundcover (GC) | 0.27 | 0.95 | ‒0.73 | 1 | 0.91 | 0.85 | 0.95 |
5 | Biomass (BM) | 0.26 | 0.87 | ‒0.58 | 0.89 | 1 | 0.76 | 0.83 |
6 | Nitrogen (N) | 0.26 | 0.71 | ‒0.67 | 0.74 | 0.56 | 1 | 0.83 |
7 | Acidic detergent fibre (ADF) | 0.26 | 0.87 | ‒0.74 | 0.91 | 0.79 | 0.66 | 1 |
Table 1 Pearson correlation coefficients between independent variables
No. | Variables | HH | SH | DR | GC | BM | N | ADF |
---|---|---|---|---|---|---|---|---|
1 | Habitat heterogeneity (HH) | 1 | 0.54 | 0.18 | 0.34 | 0.43 | 0.24 | 0.28 |
2 | Sward height (SH) | 0.34 | 1 | 0.51 | 0.44 | 0.61 | 0.26 | 0.29 |
3 | Distance to river (DR) | ‒0.15 | ‒0.71 | 1 | ‒0.19 | 0.11 | ‒0.27 | ‒0.31 |
4 | Groundcover (GC) | 0.27 | 0.95 | ‒0.73 | 1 | 0.91 | 0.85 | 0.95 |
5 | Biomass (BM) | 0.26 | 0.87 | ‒0.58 | 0.89 | 1 | 0.76 | 0.83 |
6 | Nitrogen (N) | 0.26 | 0.71 | ‒0.67 | 0.74 | 0.56 | 1 | 0.83 |
7 | Acidic detergent fibre (ADF) | 0.26 | 0.87 | ‒0.74 | 0.91 | 0.79 | 0.66 | 1 |
Variables | Hippo dung | Cattle dung | |||
---|---|---|---|---|---|
Mean | Std. Error | Mean | Std. Error | ||
Site | West | 2.361 | 0.5092 | 0.000 | 0.000 |
East | 0.153 | 0.066 | 4.708 | 0.515 | |
Season | Wet | 1.000 | 0.186 | 1.743 | 0.238 |
Dry | 1.513 | 0.205 | 2.965 | 0.530 |
Table 2 Mean number of hippopotamus (hippo) and cattle droppings across sites and seasons
Variables | Hippo dung | Cattle dung | |||
---|---|---|---|---|---|
Mean | Std. Error | Mean | Std. Error | ||
Site | West | 2.361 | 0.5092 | 0.000 | 0.000 |
East | 0.153 | 0.066 | 4.708 | 0.515 | |
Season | Wet | 1.000 | 0.186 | 1.743 | 0.238 |
Dry | 1.513 | 0.205 | 2.965 | 0.530 |
Season | Variable | Cattle | Hippo | ||||
---|---|---|---|---|---|---|---|
β | Radj2 | P | β | Radj2 | P | ||
Wet season | Habitat heterogeneity | 0.000 | 0.299 | 0.765 | ‒0.000 | ‒0.341 | 0.733 |
Sward height (cm) | 0.000 | 2.125 | 0.035 | ‒0.000 | ‒3.726 | 0.000 | |
Distance to river (m) | ‒0.000 | ‒7.459 | 0.000 | 0.000 | 0.264 | 0.792 | |
Nitrogen (%) | ‒0.000 | ‒1.297 | 0.196 | ‒0.000 | ‒3.632 | 0.000 | |
Biomass (g m-2) | 0.000 | 3.336 | 0.001 | 0.000 | 4.445 | 0.000 | |
ADF (%) | ‒0.000 | ‒5.363 | 0.000 | 0.000 | 11.002 | 0.000 | |
Dry season | Habitat heterogeneity | ‒0.000 | ‒1.485 | 0.139 | 0.000 | 0.449 | 0.654 |
Sward height (cm) | 0.000 | 2.324 | 0.022 | ‒0.000 | ‒5.287 | 0.000 | |
Distance to river (m) | ‒0.000 | ‒2.897 | 0.004 | 0.000 | ‒0.467 | 0.641 | |
Nitrogen (%) | 0.001 | 8.620 | 0.000 | ‒0.000 | ‒2.987 | 0.003 | |
Biomass (g m2) | ‒0.000 | ‒4.183 | 0.000 | ‒0.000 | ‒0.983 | 0.327 | |
ADF (%) | ‒0.000 | ‒1.945 | 0.054 | 0.000 | 7.315 | 0.000 |
Table 3 Linear regression model between dropping densities of cattle and hippopotamus and environmental variables
Season | Variable | Cattle | Hippo | ||||
---|---|---|---|---|---|---|---|
β | Radj2 | P | β | Radj2 | P | ||
Wet season | Habitat heterogeneity | 0.000 | 0.299 | 0.765 | ‒0.000 | ‒0.341 | 0.733 |
Sward height (cm) | 0.000 | 2.125 | 0.035 | ‒0.000 | ‒3.726 | 0.000 | |
Distance to river (m) | ‒0.000 | ‒7.459 | 0.000 | 0.000 | 0.264 | 0.792 | |
Nitrogen (%) | ‒0.000 | ‒1.297 | 0.196 | ‒0.000 | ‒3.632 | 0.000 | |
Biomass (g m-2) | 0.000 | 3.336 | 0.001 | 0.000 | 4.445 | 0.000 | |
ADF (%) | ‒0.000 | ‒5.363 | 0.000 | 0.000 | 11.002 | 0.000 | |
Dry season | Habitat heterogeneity | ‒0.000 | ‒1.485 | 0.139 | 0.000 | 0.449 | 0.654 |
Sward height (cm) | 0.000 | 2.324 | 0.022 | ‒0.000 | ‒5.287 | 0.000 | |
Distance to river (m) | ‒0.000 | ‒2.897 | 0.004 | 0.000 | ‒0.467 | 0.641 | |
Nitrogen (%) | 0.001 | 8.620 | 0.000 | ‒0.000 | ‒2.987 | 0.003 | |
Biomass (g m2) | ‒0.000 | ‒4.183 | 0.000 | ‒0.000 | ‒0.983 | 0.327 | |
ADF (%) | ‒0.000 | ‒1.945 | 0.054 | 0.000 | 7.315 | 0.000 |
Dry season | Wet season | ||||||||
---|---|---|---|---|---|---|---|---|---|
Species | Variables | Value | SE | z | P | Value | SE | z | P |
Cattle | ADF (%) | 0.221 | 0.064 | 3.457 | 0.001 | ||||
Biomass (g m-2) | 0.037 | 0.016 | 2.253 | 0.024 | |||||
Nitrogen (%) | 1.198 | 0.177 | 6.750 | 0.000 | |||||
Sward height (cm) | 0.255 | 0.085 | 2.983 | 0.003 | ‒0.043 | 0.009 | ‒4.633 | 0.000 | |
Hippos | ADF (%) | 0.024 | 0.006 | 3.810 | 0.000 | ||||
Distance to river (m) | 0.002 | 0.001 | ‒2.802 | 0.005 | ‒0.004 | 0.001 | ‒4.848 | 0.000 | |
Nitrogen (%) | 0.280 | 0.183 | 1.529 | 0.126 | |||||
Sward height (cm) | ‒0.107 | 0.022 | ‒4.805 | 0.000 |
Table 4 Final generalised linear mixed model for hippopotamus and cattle dropping densities as a function of measured explanatory variables
Dry season | Wet season | ||||||||
---|---|---|---|---|---|---|---|---|---|
Species | Variables | Value | SE | z | P | Value | SE | z | P |
Cattle | ADF (%) | 0.221 | 0.064 | 3.457 | 0.001 | ||||
Biomass (g m-2) | 0.037 | 0.016 | 2.253 | 0.024 | |||||
Nitrogen (%) | 1.198 | 0.177 | 6.750 | 0.000 | |||||
Sward height (cm) | 0.255 | 0.085 | 2.983 | 0.003 | ‒0.043 | 0.009 | ‒4.633 | 0.000 | |
Hippos | ADF (%) | 0.024 | 0.006 | 3.810 | 0.000 | ||||
Distance to river (m) | 0.002 | 0.001 | ‒2.802 | 0.005 | ‒0.004 | 0.001 | ‒4.848 | 0.000 | |
Nitrogen (%) | 0.280 | 0.183 | 1.529 | 0.126 | |||||
Sward height (cm) | ‒0.107 | 0.022 | ‒4.805 | 0.000 |
Dry season | Wet season | ||||||||
---|---|---|---|---|---|---|---|---|---|
Species | Variables | Estimate | SE | z | P | Estimate | SE | z | P |
Cattle | Distance to river (m) | ‒0.017 | 0.004 | ‒3.897 | 0.000 | ‒0.009 | 0.006 | ‒1.719 | 0.086 |
Nitrogen (%) | 1.285 | 0.429 | 2.993 | 0.003 | 2.615 | 1.221 | 2.141 | 0.032 | |
Habitat heterogeneity | ‒0.021 | 7.085 | ‒0.003 | 0.998 | |||||
Hippos | ADF | 0.221 | 0.064 | 3.457 | 0.000 | ||||
Biomass (g m-2) | 0.235 | 0.054 | 4.344 | 0.000 | |||||
Sward height (cm) | ‒0.569 | 0.156 | ‒3.656 | 0.000 |
Table 5 Final mixed logistic regression model for relationships between cattle and hippopotamus dropping densities as a function of measured explanatory variables
Dry season | Wet season | ||||||||
---|---|---|---|---|---|---|---|---|---|
Species | Variables | Estimate | SE | z | P | Estimate | SE | z | P |
Cattle | Distance to river (m) | ‒0.017 | 0.004 | ‒3.897 | 0.000 | ‒0.009 | 0.006 | ‒1.719 | 0.086 |
Nitrogen (%) | 1.285 | 0.429 | 2.993 | 0.003 | 2.615 | 1.221 | 2.141 | 0.032 | |
Habitat heterogeneity | ‒0.021 | 7.085 | ‒0.003 | 0.998 | |||||
Hippos | ADF | 0.221 | 0.064 | 3.457 | 0.000 | ||||
Biomass (g m-2) | 0.235 | 0.054 | 4.344 | 0.000 | |||||
Sward height (cm) | ‒0.569 | 0.156 | ‒3.656 | 0.000 |
[1] | Appiah D O, Sarfo M, Famieh B, et al. 2017. Environmental and socioeconomic perturbations of a dam project on catchment communities, Ghana. Global Environmental Health and Safety, 1: 1-9. |
[2] |
Bailey D W, Gross J E, Laca E A, et al. 1996. Mechanisms that result in large herbivore grazing distribution patterns. Journal of Range Management, 49(5): 386-400.
DOI URL |
[3] | Bates D, Mächler M, Bolker B M, et al. 2015. Fitting linear mixed-effects models Usinglme4. Journal of Statistical Software, 67(1): 1-48. |
[4] | Bos D, Drent R H, Rubinigg M, et al. 2005. The relative importance of food biomass and quality for patch and habitat choice in Brent Geese Branta bernicla. Ardea, 93(1): 5-16. |
[5] |
Bruner A G, Gullison R E, Rice R E, et al. 2001. Effectiveness of parks in protecting tropical biodiversity. Science, 291(5501): 125-128.
PMID |
[6] | Chansa W, Senzota R, Chabwela H, et al. 2011. The influence of grass biomass production on hippopotamus population density distribution along the Luangwa River in Zambia. Journal of Ecology and the Natural Environment, 3(5): 186-194. |
[7] |
Charnov E L. 1976. Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2): 129-136.
PMID |
[8] |
Clausen P. 2000. Modelling water level influence on habitat choice and food availability for Zostera feeding Brent Geese Branta bernicla in non-tidal areas. Wildlife Biology, 6(2): 75-87.
DOI URL |
[9] |
Cromsigt J P, van Rensburg S J, Etienne R S, et al. 2009. Monitoring large herbivore diversity at different scales: Comparing direct and indirect methods. Biodiversity and Conservation, 18(5): 1219-1231.
DOI URL |
[10] | Dakwa K B, Cuthill I C, Harris S. 2020. Seasonal variation in the selection and use of habitats by large herbivores at mole National Park, Ghana. West African Journal of Applied Ecology, 28(2): 132-139. |
[11] | de Vries M F W, Daleboudt C. 1994. Foraging strategy of cattle in patchy grassland. Oecologia, 100(1): 98-106. |
[12] | Dery P K. 2017. Post inundation effects of Bui Hydro Electric Dam on the large mammals in the Bui National Park in the Brong Ahafo Region of Ghana. Diss., Sunyani, Ghana: Kwame Nkrumah University of Science and Technology, |
[13] |
Deshmukh I K. 1984. A common relationship between precipitation and grassland peak biomass for east and southern Africa. African Journal of Ecology, 22(3): 181-186.
DOI URL |
[14] |
Djagoun C A M S, Codron D, Sealy J, et al. 2016. Isotopic niche structure of a mammalian herbivore assemblage from a West African savanna: Body mass and seasonality effect. Mammalian Biology, 81(6): 644-650
DOI URL |
[15] |
Durant D, Fritz H, Duncan P. 2004. Feeding patch selection by herbivorous Anatidae: The influence of body size, and of plant quantity and quality. Journal of Avian Biology, 35(2): 144-152.
DOI URL |
[16] |
Freckleton R P. 2002. On the misuse of residuals in ecology: Regression of residuals vs. multiple regression. Journal of Animal Ecology, 71(3): 542-545.
DOI URL |
[17] |
Fryxell J M, Wilmshurst J F, Sinclair A R. 2004. Predictive models of movement by Serengeti grazers. Ecology, 85(9): 2429-2435.
DOI URL |
[18] |
Fryxell J M, Wilmshurst J F, Sinclair A R, et al. 2005. Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecology Letters, 8(3): 328-335.
DOI URL |
[19] |
Fryxell J M. 1991. Forage quality and aggregation by large herbivores. The American Naturalist, 138(2): 478-498.
DOI URL |
[20] |
Gambo B G, Yahaya A, Girgiri I, et al. 2015. Morphometric studies of the mandibular and maxillofacial regions of the Kuri cattle and the implications in regional anaesthesia. Folia Morphologica, 74(2): 183-187.
DOI PMID |
[21] |
Gregorich M, Strohmaier S, Dunkler D, et al. 2021. Regression with highly correlated predictors: Variable omission is not the solution. International Journal of Environmental Research and Public Health, 18(8): 4259. DOI: 10.3390/ijerph18084259.
DOI URL |
[22] | Hess T. 2010. Nutrient metabolism of non-ruminants in rangeland systems. Range and Animal Sciences and Resources Management, 2: 48. http://www.eolss.net/sample-chapters/c10/e5-35-15.pdf. |
[23] |
Illius A W, Gordon I J. 1987. The allometry of food intake in grazing ruminants. The Journal of Animal Ecology, 56(3): 989-999.
DOI URL |
[24] | IUCN/PACO. 2010. Parks and reserves of Ghana: Management effectiveness assessment of protected areas. Ouagadougou, Burkina Faso: UICN/PACO. https://portals.iucn.org/library/sites/library/files/documents/2010-073.pdf. |
[25] |
Jachmann H. 2008. Monitoring law-enforcement performance in nine protected areas in Ghana. Biological Conservation, 141(1): 89-99.
DOI URL |
[26] | Jackman S, Fearon J, Jackman M S. 2007. MCMCpack, S. The PSCL package. Soware. http://cran.rproject.org/src/contrib/Descriptions/pscl.html. |
[27] |
Kanga E M, Ogutu J O, Piepho H P, et al. 2013. Hippopotamus and livestock grazing: Influences on riparian vegetation and facilitation of other herbivores in the Mara Region of Kenya. Landscape and Ecological Engineering, 9(1): 47-58.
DOI URL |
[28] |
Laca E A, Sokolow S, Galli J R, et al. 2010. Allometry and spatial scales of foraging in mammalian herbivores. Ecology Letters, 13(3): 311-320.
DOI PMID |
[29] |
Langvatn R, Hanley T A. 1993. Feeding-patch choice by red deer in relation to foraging efficiency. Oecologia, 95(2): 164-170.
DOI PMID |
[30] | Laws R M, Clough G. 1966. Observation of reproduction in the Hippopotamus (Hippopotamus amphibius). Symposium of the Zoological Society of London, 15: 117140. |
[31] |
Lewison R L, Carter J. 2004. Exploring behavior of an unusual megaherbivore: A spatially explicit foraging model of the hippopotamus. Ecological Modelling, 171(1-2): 127-138.
DOI URL |
[32] |
Manseau M, Gauthier G. 1993. Interactions between greater snow geese and their rearing habitat. Ecology, 74(7): 2045-2055.
DOI URL |
[33] |
Manteca X, Smith A J. 1994. Effects of poor forage conditions on the behaviour of grazing ruminants. Tropical Animal Health and Production, 26(3): 129-138.
PMID |
[34] | Mekonen S, Hailemariam B. 2016. Ecological behaviour of common Hippopotamus (Hippopotamus amphibius, LINNAEUS, 1758) in Boye Wetland, Jimma, Ethiopia. American Journal of Scientific and Industrial Research, 7(2): 41-9. |
[35] |
Milchunas D G, Lauenroth W K. 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments: Ecological Archives M063-001. Ecological Monographs, 63(4): 327-366.
DOI URL |
[36] |
O'Connor T G, Campbell B M. 1986. Hippopotamus habitat relationships on the Lundi River, Gonarezhou National Park, Zimbabwe. African Journal of Ecology, 24(1): 7-26.
DOI URL |
[37] |
Parker K L, Barboza P S, Gillingham M P. 2009. Nutrition integrates environmental responses of ungulates. Functional Ecology, 23(1): 57-69.
DOI URL |
[38] |
Pearson R A, Archibald R F, Muirhead R H. 2001. The effect of forage quality and level of feeding on digestibility and gastrointestinal transit time of oat straw and alfalfa given to ponies and donkeys. British Journal of Nutrition, 85(5): 599-606.
PMID |
[39] |
Pearson R A, Archibald R F, Muirhead R H. 2006. A comparison of the effect of forage type and level of feeding on the digestibility and gastrointestinal mean retention time of dry forages given to cattle, sheep, ponies and donkeys. British Journal of Nutrition, 95(1): 88-98.
PMID |
[40] |
Piana R P, Marsden S J. 2014. Impacts of cattle grazing on forest structure and raptor distribution within a neotropical protected area. Biodiversity and Conservation, 23(3): 559-572.
DOI URL |
[41] |
Redfern J V, Grant R, Biggs H, et al. 2003. Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology, 84(8): 2092-2107.
DOI URL |
[42] | Reid R S, Rainy M, Ogutu J, et al. 2003. People, wildlife and livestock in the Mara ecosystem: The Mara count 2002. International Livestock Research Institute, Nairobi, Kenya. http://www.maasaimaracount.org/reports/Maracount.pdf. |
[43] |
Roughgarden J, Feldman M. 1975. Species packing and predation pressure. Ecology, 56(2): 489-492.
DOI URL |
[44] |
Schrama M, Heijning P, Bakker J P, et al. 2013. Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralisation in moist grasslands. Oecologia, 172(1): 231-243.
DOI URL |
[45] |
Senft R L, Coughenour M B D, Bailey W, et al. 1987. Large herbivore foraging and ecological hierarchies. BioScience, 37(11): 789-799.
DOI URL |
[46] |
Spinage C A. 2012. African ecology: Benchmarks and historical perspectives. Springer. DOI: 10.1007/978-3-642-22872-8.
DOI |
[47] | Stern M, Quesada M, Stoner K E. 2002. Changes in composition and structure of a tropical dry forest following intermittent cattle grazing. Revista de Biología Tropical, 50(3-4): 1021-1034. |
[48] |
Subalusky A L, Dutton C L, Rosi-Marshall E J, et al. 2015. The hippopotamus conveyor belt: Vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa. Freshwater Biology, 60(3): 512-525.
DOI URL |
[49] | Timbuka C. 2012. The ecology and behaviour of the common hippopotamus, hippopotamus amphibius L. in Katavi National Park, Tanzania: Responses to Varying Water Resources. Diss., Norwich, UK: University of East Anglia. |
[50] | Venables W N, Ripley B D. 2002. Modern applied statistics with S. Fourth edition. New York, USA: Springer. |
[51] |
Wilmshurst J F, Fryxell J M, Bergman C M. 2000. The allometry of patch selection in ruminants. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1441): 345-349.
DOI URL |
[52] |
Wood K A, Hilton G M, Newth J L, et al. 2019. Seasonal variation in energy gain explains patterns of resource use by avian herbivores in an agricultural landscape: Insights from a mechanistic model. Ecological Modelling, 409: 108762. DOI: 10.1016/j.ecolmodel.2019.108762.
DOI URL |
[53] |
Zhang Y, Prins H H, Cao L, et al. 2016. Variation in elevation and sward height facilitate coexistence of goose species through allometric responses in wetlands. Waterbirds, 39(1): 34-44.
DOI URL |
[54] | Zubkowicz R. 2005. Selected problems of organizing exhibition areas for common Hippopotamus (Hippopotamus amphibius) Zoological data, Annals of Warsaw Agriculture University - SGGW. Horticulture, 26: 211-218. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||