Journal of Resources and Ecology ›› 2022, Vol. 13 ›› Issue (6): 1128-1142.DOI: 10.5814/j.issn.1674-764x.2022.06.017
• Land Resource and Land Use • Previous Articles Next Articles
OU Dinghua1,2(), WU Nengjun1, LI Yuanxi1, MA Qing1, ZHENG Siyuan1, LI Shiqi1, YU Dongrui1, TANG Haolun1, GAO Xuesong1,2,*(
)
Received:
2021-05-24
Accepted:
2022-01-05
Online:
2022-11-30
Published:
2022-10-12
Contact:
GAO Xuesong
About author:
OU Dinghua, E-mail: oudinghua@hotmail.com
Supported by:
OU Dinghua, WU Nengjun, LI Yuanxi, MA Qing, ZHENG Siyuan, LI Shiqi, YU Dongrui, TANG Haolun, GAO Xuesong. Delimiting Ecological Space and Simulating Spatial-temporal Changes in Its Ecosystem Service Functions based on a Dynamic Perspective: A Case Study on Qionglai City of Sichuan Province, China[J]. Journal of Resources and Ecology, 2022, 13(6): 1128-1142.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2022.06.017
Ecosystem type | Land use type |
---|---|
Cropland | Paddy filed, irrigated cropland, rainfed cropland |
Forest land | Woodland, shrubbery land, other woodlands, fruit plantation, tea plantation, other orchards |
Grassland | Other grasslands |
Wetland | Inland mudflat |
Water body | River, pond, reservoir, ditches |
Desert | Sand, barren land |
Settlement | Mining land, land for scenic site facilities, railway, highway, rural road, city, organic town, village, hydraulic structure, land for agricultural facilities |
Table 1 Correspondence between ecosystem types and land use types
Ecosystem type | Land use type |
---|---|
Cropland | Paddy filed, irrigated cropland, rainfed cropland |
Forest land | Woodland, shrubbery land, other woodlands, fruit plantation, tea plantation, other orchards |
Grassland | Other grasslands |
Wetland | Inland mudflat |
Water body | River, pond, reservoir, ditches |
Desert | Sand, barren land |
Settlement | Mining land, land for scenic site facilities, railway, highway, rural road, city, organic town, village, hydraulic structure, land for agricultural facilities |
Ecosystem type | Provision service | Regulation service | Support service | Cultural service | ||||
---|---|---|---|---|---|---|---|---|
PPP | GR | CR | EP | HR | SC | BIO | AL | |
Farmland | 1.35 | 0.89 | 0.47 | 0.14 | 0.19 | 0.68 | 0.17 | 0.08 |
Forest | 0.77 | 1.76 | 5.27 | 1.57 | 4.09 | 2.31 | 1.95 | 0.86 |
Grassland | 0.58 | 1.21 | 3.19 | 1.05 | 2.53 | 1.58 | 1.34 | 0.59 |
Wetland | 1.01 | 1.90 | 3.60 | 3.60 | 26.82 | 2.49 | 7.87 | 4.73 |
Desert | 0.00 | 0.02 | 0.00 | 0.10 | 0.03 | 0.02 | 0.02 | 0.01 |
Waters | 1.03 | 0.77 | 2.29 | 5.55 | 110.53 | 1.00 | 2.55 | 1.89 |
Settlement | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Table 2 Equivalence of ecosystem service values supplied per unit area
Ecosystem type | Provision service | Regulation service | Support service | Cultural service | ||||
---|---|---|---|---|---|---|---|---|
PPP | GR | CR | EP | HR | SC | BIO | AL | |
Farmland | 1.35 | 0.89 | 0.47 | 0.14 | 0.19 | 0.68 | 0.17 | 0.08 |
Forest | 0.77 | 1.76 | 5.27 | 1.57 | 4.09 | 2.31 | 1.95 | 0.86 |
Grassland | 0.58 | 1.21 | 3.19 | 1.05 | 2.53 | 1.58 | 1.34 | 0.59 |
Wetland | 1.01 | 1.90 | 3.60 | 3.60 | 26.82 | 2.49 | 7.87 | 4.73 |
Desert | 0.00 | 0.02 | 0.00 | 0.10 | 0.03 | 0.02 | 0.02 | 0.01 |
Waters | 1.03 | 0.77 | 2.29 | 5.55 | 110.53 | 1.00 | 2.55 | 1.89 |
Settlement | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Function type | 2003‒2007 | 2007‒2013 | 2013‒2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
PPP | CR | HR | PPP | CR | HR | PPP | CR | HR | |
PPP (ha) | 29083 | 200 | 59 | 29084 | 598 | 65 | 29205 | 606 | 126 |
CR (ha) | 195 | 55201 | 22 | 194 | 54815 | 14 | 450 | 54386 | 24 |
HR (ha) | 49 | 15 | 13483 | 64 | 5 | 13468 | 92 | 31 | 13387 |
Table 3 The transfer area matrix of the dominant ESFs of the ecological space in Qionglai during 2003-2007, 2007-2013 and 2013-2019.
Function type | 2003‒2007 | 2007‒2013 | 2013‒2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
PPP | CR | HR | PPP | CR | HR | PPP | CR | HR | |
PPP (ha) | 29083 | 200 | 59 | 29084 | 598 | 65 | 29205 | 606 | 126 |
CR (ha) | 195 | 55201 | 22 | 194 | 54815 | 14 | 450 | 54386 | 24 |
HR (ha) | 49 | 15 | 13483 | 64 | 5 | 13468 | 92 | 31 | 13387 |
Basic data | Time gradient | Simulation (test) data | Kappa coefficient |
---|---|---|---|
Distribution map of dominant ecosystem service functions in 2015 and 2017 | 2 | Distribution map of dominant ecosystem service functions in 2019 | 0.9737 |
Distribution map of dominant ecosystem service functions in 2011 and 2015 | 4 | Distribution map of dominant ecosystem service functions in 2019 | 0.9730 |
Distribution map of dominant ecosystem service functions in 2007 and 2013 | 6 | Distribution map of dominant ecosystem service functions in 2019 | 0.9689 |
Table 4 The accuracy of simulating spatial changes in the dominant ESFs with the Markov-CA model
Basic data | Time gradient | Simulation (test) data | Kappa coefficient |
---|---|---|---|
Distribution map of dominant ecosystem service functions in 2015 and 2017 | 2 | Distribution map of dominant ecosystem service functions in 2019 | 0.9737 |
Distribution map of dominant ecosystem service functions in 2011 and 2015 | 4 | Distribution map of dominant ecosystem service functions in 2019 | 0.9730 |
Distribution map of dominant ecosystem service functions in 2007 and 2013 | 6 | Distribution map of dominant ecosystem service functions in 2019 | 0.9689 |
TYPE | PPP | CR | HR | The area in 2025 |
---|---|---|---|---|
PPP (ha) | 29937 | 2323 | 533 | 32793 |
CR (ha) | 0 | 52490 | 0 | 52490 |
HR (ha) | 0 | 47 | 12977 | 13024 |
The area in 2019 (ha) | 29937 | 54860 | 13510 | 98307 |
Table 5 The transfer area matrix of the dominant ESFs of the ecological space in Qionglai during 2019-2025
TYPE | PPP | CR | HR | The area in 2025 |
---|---|---|---|---|
PPP (ha) | 29937 | 2323 | 533 | 32793 |
CR (ha) | 0 | 52490 | 0 | 52490 |
HR (ha) | 0 | 47 | 12977 | 13024 |
The area in 2019 (ha) | 29937 | 54860 | 13510 | 98307 |
[1] |
Al-Ahmadi K, See L D, Heppenstall A, et al. 2009. Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity, 6(2): 80-101.
DOI URL |
[2] |
Al-sharif A A A, Pradhan B. 2014. Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10): 4291-4301.
DOI URL |
[3] | Chen Y, Yue W Z, Zhang L, et al. 2020. Theoretical thinking on ecological space zoning from the perspective of territorial space planning. China Land Science, 34(8): 1-9. (in Chinese?) |
[4] |
Cicchetti D V, Feinstein A R. 1990. High agreement but low Kappa: II. Resolving the paradoxes. Journal of Clinical Epidemiology, 43(6): 551-558.
PMID |
[5] |
Costanza R, d'Arge R, de Groot R, et al. 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630): 253-260.
DOI URL |
[6] |
Costanza R, de Groot R, Sutton P, et al. 2014. Changes in the global value of ecosystem services. Global Environmental Change, 26(1): 152-158.
DOI URL |
[7] | Daily G C. 1999. Developing a scientific basis for managing earth's life support systems. Ecology & Society, 3(2): 45-49. |
[8] | Daily G C, Soderqvist T, Aniyar S, et al. 2000. The value of nature and the nature of value. Science, 289(5478): 395-396. |
[9] |
Feinstein A R, Cicchetti D V. 1990. High agreement but low Kappa: I. The problems of two paradoxes. Journal of Clinical Epidemiology, 43(6): 543-549.
DOI PMID |
[10] |
Feng Y J, Liu Y, Tong X H, et al. 2011. Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 102(3): 188-196.
DOI URL |
[11] | Gao J, Yu Z W, Wang L C, et al. 2019. Suitability of regional development based on ecosystem service benefits and losses: A case study of the Yangtze River Delta urban agglomeration, China. Ecological Indicators, 107: 105579. 1-105579.12. |
[12] | Gao J X, Xu D L, Qiao Q, et al. 2020. Pattern construction of natural ecological space and planning theory exploration. Acta Ecologica Sinica, 40(3): 749-755. (in Chinese) |
[13] | Guan X K, Zhang F R, Wang X L, et al. 2013. Spatial evolution of urban ecological land and its distribution optimization in Beijing. Areal Research and Development, 32(3): 119-124. (in Chinese) |
[14] |
Halmy M W A, Gessler P E, Hicke J A, et al. 2015. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63: 101-112.
DOI URL |
[15] | Kucsicsa G, Popovici E.A, Bălteanu D, et al. 2019. Future land use/cover changes in Romania: Regional simulations based on CLUE-S model and CORINE land cover database. Landscape and Ecological Engineering, 15(1): 75-90. |
[16] |
Kumar P, Rosenberger J M, Iqbal G M D. 2016. Mixed integer linear programming approaches for land use planning that limit urban sprawl. Computers & Industrial Engineering, 102: 33-43.
DOI URL |
[17] | Li M Y, Tian F H, Dong Y Z. 2016. Space identification of ecological importance and protection on urban ecological land in Yanji-Longjing-Tumen Area. Scientia Geographical Sinica, 36(12): 1870-1876. (in Chinese) |
[18] |
Ma C G, Zhou M. 2018. A GIS-based interval fuzzy linear programming for optimal land resource allocation at a city scale. Social Indicators Research, 135(1): 143-166.
DOI URL |
[19] | Moreno N, Menard A, Marceau D J. 2008. VecGCA: A vector-based geographic cellular automata model allowing geometric transformations of objects. Environment & Planning B: Planning & Design, 35(4): 647-665. |
[20] | Pahlavani P, Omaran H A, Bigdeli B. 2017. A multiple land use change model based on artificial neural network, Markov chain, and multi objective land allocation. Earth Observation and Geomatics Engineering, 1(2): 82-99. |
[21] |
Sang L L, Zhang C, Yang J Y, et al. 2011. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Mathematical and Computer Modelling, 54(3-4): 938-943.
DOI URL |
[22] |
Shi Y, Wang R S, Huang J L, et al. 2012. An analysis of the spatial and temporal changes in Chinese terrestrial ecosystem service functions. Chinese Science Bulletin, 57(17): 2120-2131.
DOI URL |
[23] |
Wang S D, Wang X C, Zhang H B. 2015. Simulation on optimized allocation of land resource based on DE-CA model. Ecological Modelling, 314: 135-144.
DOI URL |
[24] | Wang W J, Guo H C, Chuai X W, et al. 2014. The impact of land use change on the temporospatial variations of ecosystems services value in China and an optimized land use solution. Environmental Science & Policy, 44: 62-72. |
[25] |
Wang X, Ma B W, Li D, et al. 2020. Multi-scenario simulation and prediction of ecological space in Hubei Province based on FLUS model. Journal of Natural Resources, 35(1): 230-242. (in Chinese)
DOI URL |
[26] | Xie G D, Lu C X, Leng Y F, et al. 2003. Value evaluation of ecological assets of Qinghai-Tibet Plateau. Journal of Natural Resources, 18(2): 189-196. (in Chinese) |
[27] | Xie G D, Zhang C X, Zhang L M, et al. 2015. Improvement of the evaluation method for ecosystem service value based on per unit area. Journal of Natural Resources, 30(8): 1243-1254. (in Chinese) |
[28] | Xie G D, Zhen L, Lu C X, et al. 2008. A method of ecosystem services based on expert knowledge. Natural Resources, 23(5): 911-919. (in Chinese) |
[29] | Xie G D, Zhen L, Lu C X, et al. 2010. Applying value transfer method for Eco-service valuation in China. Journal of Resources and Ecology, 1(1): 51-59. |
[30] | Xie H L, Yao G, He Y F, et al. 2018. Study on spatial identification of critical ecological space based on GIS: A case study of Poyang Lake Ecological Economic Zone. Acta Ecologica Sinica, 38(16): 5926-5937. (in Chinese) |
[31] | Xu H L, Gao W L, Chen S, et al. 2020. Identification of urban ecological space in South Jiangsu based on GIS: A case study of Suzhou. Chinese. Journal of Ecology, 39(2): 614-624. (in Chinese) |
[32] |
Yang X, Zheng X Q, Chen R. 2014. A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecological Modelling, 283: 1-7.
DOI URL |
[33] |
Yang X, Zheng X Q, Lv L N. 2012. A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecological Modelling, 233: 11-19.
DOI URL |
[34] | Yao N, Ma L Y, Yang J, et al. 2015. Changes of ecological spaces in Beijing's Plain areas between 1992 and 2013. Chinese Journal of Ecology, 34(5): 1427-1434. (in Chinese) |
[35] | Zhang Y P, Chang Q, Guo X D. 2016. Management-oriented ecological land's conception and multi-dimensional classification system in China. Acta Ecologica Sinica, 36(12): 3655-3665. (in Chinese) |
[36] | Zhao T Q, Ouyang Z Y, Jia L Q, et al. 2004. Ecosystem services and their valuation of China grassland. Acta Ecologica Sinica, 24(6): 1101-1110. (in Chinese) |
[37] |
Zhou R, Zhang H, Ye X Y, et al. 2016. The delimitation of urban growth boundaries using the CLUE-S land-use change model: Study on Xinzhuang Town, Changshu City, China. Sustainability, 8(11): 1182. DOI: 10.3390/su8111182.
DOI URL |
[1] | LI Jianlong, LU Xiaofei, ZHANG Jingjing, MOU Linyun, ZHEN Lin, XU Zengrang, ZHOU Weihong. The Current Status, Problems and Prospects of Researches on the Carrying Capacities of Ecological Environment in China [J]. Journal of Resources and Ecology, 2019, 10(6): 605-613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||