Journal of Resources and Ecology ›› 2022, Vol. 13 ›› Issue (2): 285-298.DOI: 10.5814/j.issn.1674-764x.2022.02.011
• Urban Ecosystem • Previous Articles Next Articles
GUO Jie1,2(), SONG Wei2,*(
), GUO Liyu1, ZHANG Yuling3
Received:
2020-12-22
Accepted:
2021-06-15
Online:
2022-03-30
Published:
2022-03-09
Contact:
SONG Wei
About author:
GUO Jie, E-mail: Jguo1403@163.com
Supported by:
GUO Jie, SONG Wei, GUO Liyu, ZHANG Yuling. Simulating the Impacts of the New-type Urbanization Policy on Rural Settlement Changes: A Case Study in Dingzhou, China[J]. Journal of Resources and Ecology, 2022, 13(2): 285-298.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2022.02.011
Fig. 1 Location of Dingzhou, China Note: In the lower left corner of the picture, CD: Chengde; ZJK: Zhangjiakou; QHD: Qinhuangdao; BJ: Beijing; LF: Langfang,; TS: Tangshan; TJ: Tianjin; BD: Baoding; CZ: Cangzhou; SJZ: Shijiazhuang; HS: Hengshui; XT: Xingtai; and HD: Handan. On the right, the full names of the abbreviations are as follows: QFD: Qingfengdian; LZ: Liuzao; PC: Pangcun; DXZ: Daxinzhuang; XYC: Xiaoyoucun; YJZ: Yangjiazhuang; DT: Dongting; MYD: Mingyuedian; HTZ: Haotouzhuang Hui; ZC: Zhoucun; BGP: Beigaopeng; and XC: Xicheng.
Data | Type | Resolution (m) | Source |
---|---|---|---|
Land use/land cover data | Raster | 30 | RESDC |
GDP spatial distribution data | Raster | 1000 | RESDC |
Population spatial distribution data | Raster | 1000 | RESDC |
Digital Elevation Model | Raster | 30 | Geospatial Data Cloud |
Distance to water area | Raster | 30 | |
Distance to urban land | Raster | 30 | |
Distance to rural settlement | Raster | 30 | |
Slope data | Raster | 30 | |
Main canal spatial distribution data | Vector | ||
Expressway spatial distribution data | Vector | ||
Railway spatial distribution data | Vector |
Table 1 Details of the research data obtained for Dingzhou
Data | Type | Resolution (m) | Source |
---|---|---|---|
Land use/land cover data | Raster | 30 | RESDC |
GDP spatial distribution data | Raster | 1000 | RESDC |
Population spatial distribution data | Raster | 1000 | RESDC |
Digital Elevation Model | Raster | 30 | Geospatial Data Cloud |
Distance to water area | Raster | 30 | |
Distance to urban land | Raster | 30 | |
Distance to rural settlement | Raster | 30 | |
Slope data | Raster | 30 | |
Main canal spatial distribution data | Vector | ||
Expressway spatial distribution data | Vector | ||
Railway spatial distribution data | Vector |
Land use type | Conventional urbanization | New-type urbanization | Counter- urbanization |
---|---|---|---|
Cultivated land | 73.76 | 72.62 | 68.92 |
Forest | 0.09 | 3.31 | 3.31 |
Water area | 2.55 | 3.05 | 3.05 |
Urban land | 5.67 | 3.79 | 3.80 |
Rural settlement | 16.64 | 15.65 | 19.35 |
Other construction | 1.29 | 1.57 | 1.57 |
Table 2 Demands for land area under different development scenarios in Dingzhou, China, in 2030. (Unit: %)
Land use type | Conventional urbanization | New-type urbanization | Counter- urbanization |
---|---|---|---|
Cultivated land | 73.76 | 72.62 | 68.92 |
Forest | 0.09 | 3.31 | 3.31 |
Water area | 2.55 | 3.05 | 3.05 |
Urban land | 5.67 | 3.79 | 3.80 |
Rural settlement | 16.64 | 15.65 | 19.35 |
Other construction | 1.29 | 1.57 | 1.57 |
Land use type | Cultivated land | Forest | Water area | Urban land | Rural settlement | Other constructions |
---|---|---|---|---|---|---|
Cultivated land | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 |
Forest | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c0 | a1/b1/c0 | a1/b1/c0 |
Water area | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c0 | a1/b1/c0 | a1/b1/c0 |
Urban land | a1/b1/c1 | a0/b1/c1 | a0/b1/c1 | a0/b1/c1 | a0/b1/c1 | a0/b1/c1 |
Rural settlement | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 |
Other construction | a1/b1/c1 | a0/b1/c1 | a0/b1/c1 | a1/b1/c1 | a0/b1/c1 | a1/b1/c1 |
Table 3 Future land use cost matrix under the three urbanization scenarios
Land use type | Cultivated land | Forest | Water area | Urban land | Rural settlement | Other constructions |
---|---|---|---|---|---|---|
Cultivated land | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 |
Forest | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c0 | a1/b1/c0 | a1/b1/c0 |
Water area | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c0 | a1/b1/c0 | a1/b1/c0 |
Urban land | a1/b1/c1 | a0/b1/c1 | a0/b1/c1 | a0/b1/c1 | a0/b1/c1 | a0/b1/c1 |
Rural settlement | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 | a1/b1/c1 |
Other construction | a1/b1/c1 | a0/b1/c1 | a0/b1/c1 | a1/b1/c1 | a0/b1/c1 | a1/b1/c1 |
Land use type | Cultivated land | Forest | Water area | Urban land | Rural settlement | Other construction land |
---|---|---|---|---|---|---|
Neighborhood weight | 0.5 | 0.4 | 0.5 | 1 | 0.8 | 0.9 |
Table 4 Neighborhood weights of the different land use types
Land use type | Cultivated land | Forest | Water area | Urban land | Rural settlement | Other construction land |
---|---|---|---|---|---|---|
Neighborhood weight | 0.5 | 0.4 | 0.5 | 1 | 0.8 | 0.9 |
Land use type | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|
Cultivated land | 1059.54 | 1058.49 | 1056.25 | 997.10 |
Forest | 1.46 | 1.41 | 1.46 | 1.20 |
Water area | 25.94 | 25.87 | 25.94 | 29.62 |
Urban land | 16.80 | 18.02 | 18.85 | 40.40 |
Rural settlement | 174.32 | 174.27 | 174.80 | 196.13 |
Other construction land | 1.76 | 1.76 | 2.53 | 15.38 |
Total | 1279.82 | 1279.82 | 1279.82 | 1279.82 |
Table 5 Area of each land use type in Dingzhou, China, in different years (Unit: km²)
Land use type | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|
Cultivated land | 1059.54 | 1058.49 | 1056.25 | 997.10 |
Forest | 1.46 | 1.41 | 1.46 | 1.20 |
Water area | 25.94 | 25.87 | 25.94 | 29.62 |
Urban land | 16.80 | 18.02 | 18.85 | 40.40 |
Rural settlement | 174.32 | 174.27 | 174.80 | 196.13 |
Other construction land | 1.76 | 1.76 | 2.53 | 15.38 |
Total | 1279.82 | 1279.82 | 1279.82 | 1279.82 |
Fig. 3 Land use status of Dingzhou, China in 2000 (a), 2005 (b), 2010 (c), and 2015 (d). Note: QFD: Qingfengdian; LZ: Liuzao; PC: Pangcun; DXZ: Daxinzhuang; XYC: Xiaoyoucun; YJZ: Yangjiazhuang; DT: Dongting; MYD: Mingyuedian; HTZ: Haotouzhuang Hui; ZC: Zhoucun; BGP: Beigaapeng; and XC: Xicheng.
Fig. 4 Land use status in Dingzhou, China, in 2015 (a) and simulation results (b). Note: QFD: Qingfengdian; LZ: Liuzao; PC: Pangcun; DXZ: Daxinzhuang; XYC: Xiaoyoucun; YJZ: Yangjiazhuang; DT: Dongting; MYD: Mingyuedian; HTZ: Haotouzhuang Hui; ZC: Zhoucun; BGP: Beigaapeng; and XC: Xicheng.
Fig. 5 Spatial distribution of the probability-of-occurrence of rural settlements in Dingzhou, China Note: QFD: Qingfengdian; LZ: Liuzao; PC: Pangcun; DXZ: Daxinzhuang; XYC: Xiaoyoucun; YJZ: Yangjiazhuang; DT: Dongting; MYD: Mingyuedian; HTZ: Haotouzhuang Hui; ZC: Zhoucun; BGP: Beigaapeng; and XC: Xicheng.
Fig. 6 Land use in Dingzhou, China, in 2030 under the conventional urbanization scenario (a), the new-type urbanization scenario (b), and the counter-urbanization scenario (c). Note: QFD: Qingfengdian; LZ: Liuzao; PC: Pangcun; DXZ: Daxinzhuang; XYC: Xiaoyoucun; YJZ: Yangjiazhuang; DT: Dongting; MYD: Mingyuedian; HTZ: Haotouzhuang Hui; ZC: Zhoucun; BGP: Beigaapeng; and XC: Xicheng.
Fig. 7 Spatial changes of rural settlements from 2015 to 2030 under conventional urbanization (a), new-type urbanization, (b) and counter-urbanization (c) in Dingzhou, China. Note: QFD: Qingfengdian; LZ: Liuzao; PC: Pangcun; DXZ: Daxinzhuang; XYC: Xiaoyoucun; YJZ: Yangjiazhuang; DT: Dongting; MYD: Mingyuedian; HTZ: Haotouzhuang Hui; ZC: Zhoucun; BGP: Beigaapeng; and XC: Xicheng.
[1] |
Abreu C G, Coelho C G C, Ralha C G, et al. 2014. A model and simulation framework for exploring potential impacts of land use policies: The Brazilian Cerrado case. 2014 47th Hawaii International Conference on System Sciences. Hawaii, USA: IEEE. DOI: 10.1109/HICSS.2014.113.
DOI |
[2] |
Anputhas M, Janmaat J, Nichol C, et al. 2019. If they come, where will we build it? Land-use implications of two forest conservation policies in the Deep Creek Watershed. Forests, 10(7): 581. DOI: 10.3390/f10070581.
DOI URL |
[3] | Chen M X, Guo S S, Lu D D. 2018. Characteristics and spatial patterns of floating population in the Beijing-Tianjin-Hebei urban agglomeration under the background of new urbanization. Progress in Geography, 37(3): 363-372. (in Chinese) |
[4] | Cui X, Wang Y C, Zhang B L, et al. 2020. Spatiotemporal evolution of rural settlements and influencing factors in Baoding City. Research of Soil and Water Conservation, 27(5): 265-272, 262. (in Chinese) |
[5] |
Feng Z, Wu J S, Gao Y, et al. 2015. Environmental policy simulation and assessment under rapid urbanization: Case study of essential area policy in Shenzhen, China. Journal of Urban Planning and Development, 141(4): 05014030. DOI: 10.1061/(asce)up.1943-5444.0000259.
DOI URL |
[6] | Gong J, Yang J, Li Y F. 2015. A case-based cellular automation model for simulating changes in rural residential areas. Resources Science, 37(9): 1797-1806. (in Chinese) |
[7] |
Gong J Z, Jian Y Q, Chen W L, et al. 2019. Transitions in rural settlements and implications for rural revitalization in Guangdong Province. Journal of Rural Studies. DOI: 10.1016/j.jrurstud.2019.10.037.
DOI |
[8] | Han H R, Yang C F, Song J P. 2015. Simulation and projection of land-use change in Beijing under different scenarios. Progress in Geography, 34(8): 976-986. (in Chinese) |
[9] |
Huang Y, Huang J L, Liao T J, et al. 2018. Simulating urban expansion and its impact on functional connectivity in the Three Gorges Reservoir Area. Science of the Total Environment, 643: 1553-1561.
DOI URL |
[10] |
Li H H, Song W. 2019. Expansion of rural settlements on high-quality arable land in Tongzhou District in Beijing, China. Sustainability, 11(19): 5153. DOI: 10.3390/su11195153.
DOI URL |
[11] |
Li H H, Song W. 2020. Evolution of rural settlements in the Tongzhou District of Beijing under the new-type urbanization policies. Habitat International, 101: 102198. DOI: 10.1016/j.habitatint.2020.102198.
DOI URL |
[12] | Li H H, Song W, Chen B M, et al. 2019. Review of the research on the evolution simulation of spatical-temporal patterns in rural settlements. Journal of China Agricultural Resources and Regional Planning, 40(1): 79-88. (in Chinese) |
[13] |
Li D M, Wang D Y, Li H, et al. 2017. The effects of rural settlement evolution on the surrounding land ecosystem service values: A case study in the eco-fragile areas, China. ISPRS International Journal of Geo-info rmation, 6(2): 49. DOI: 10.3390/ijgi6020049.
DOI |
[14] |
Li Y H, Jia L R, Wu W H, et al. 2018. Urbanization for rural sustainability -Rethinking China’s urbanization strategy. Journal of Cleaner Production, 178: 580-586.
DOI URL |
[15] |
Liang X, Liu X P, Li D, et al. 2018a. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. International Journal of Geographical Information Science, 32(11̶12): 2294-2316.
DOI URL |
[16] |
Liang X, Liu X P, Chen G L, et al. 2020. Coupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones. International Journal of Geographical Information Science, 34(10): 1930-1952.
DOI URL |
[17] |
Liang X, Liu X P, Li X, et al. 2018b. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landscape and Urban Planning, 177: 47-63.
DOI URL |
[18] |
Liu Y B, Hou X Y, Li X W, et al. 2020. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecological Indicators, 111: 106004. DOI: 10.1016/j.ecolind.2019.106004.
DOI URL |
[19] |
Liu X P, Liang X, Li X, et al. 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168: 94-116.
DOI URL |
[20] |
Long H L. 2014. Land consolidation: An indispensable way of spatial restructuring in rural China. Journal of Geographical Sciences, 24(2): 211-225.
DOI URL |
[21] |
Long H L, Liu Y S, Wu X Q, et al. 2009. Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: Implications for building a new countryside in coastal China. Land Use Policy, 26(2): 322-333.
DOI URL |
[22] | Ouyang G H. 2020. Spatial pattern evolution and mechanism of rural residential areas around big cities: Taking Jiangxia District of Wuhan as an example. Urban Problems, 2020(2): 13-21. (in Chinese) |
[23] | Ren Y Q, Wu Y. 2021. Spatial pattern of rural settlements in Langzhong City and its influencing factors. Journal of China West Normal University (Natural Sciences), 42(2): 181-187. (in Chinese) |
[24] |
Shi M J, Xie Y W, Cao Q. 2016. Spatiotemporal changes in rural settlement land and rural population in the middle basin of the Heihe River, China. Sustainability, 8(7): 614. DOI: 10.3390/su8070614.
DOI URL |
[25] |
Song W, Liu M L. 2014. Assessment of decoupling between rural settlement area and rural population in China. Land Use Policy, 39: 331-341.
DOI URL |
[26] |
Song W, Chen B M, Zhang Y. 2014. Land-use change and socio-economic driving forces of rural settlement in China from 1996 to 2005. Chinese Geographical Science, 24(5): 511-524.
DOI URL |
[27] |
Tannier C, Cura R, Leturcq S, et al. 2020. An agent-based model for exploring the combined effects of social and demographic changes on the concentration and hierarchy of rural settlement patterns in north-western Europe during the middle ages (800-1200 CE). Journal of Anthropo logical Archaeology, 59: 101204. DOI: 10.1016/j.jaa.2020.101204.
DOI |
[28] | Wang X W. 2017. Study on the development of the green eco-city under the background of new-type urbanization. Agro Food Industry Hi-Tech, 28(3): 1410-1412. |
[29] | XNA (Xinhua News Agency). 2014. National new-type urbanization plan (2014-2020). http://www.gov.cn/zhengce/2014-03/16/content_2640075.htm. Viewed 2 Feb 2020. |
[30] |
Xu X L. 2017a. China’s GDP spatial distribution on kilometer grid data set. Data Registration and Publication System of Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences. DOI: 10.12078/2017121102.
DOI |
[31] |
Xu X L. 2017b. Spatial distribution of population in China based on kilometer grid data set. Data Registration and Publication System of Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences. DOI: 10.12078/2017121101.
DOI |
[32] |
Yan Y C, Liu X P, Wang F Y, et al. 2018. Assessing the impacts of urban sprawl on net primary productivity using fusion of Landsat and MODIS data. Science of the Total Environment, 613-614: 1417-1429.
DOI URL |
[33] |
Yang R, Liu Y S, Long H L, et al. 2015. Spatio-temporal characteristics of rural settlements and land use in the Bohai Rim of China. Journal of Geographical Sciences, 25(5): 559-572.
DOI URL |
[34] | Yu Z W, Guo X Y, Zeng Y X, et al. 2018. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou City, China. Urban Forestry & Urban Greening, 29: 113-121. |
[35] | Zhang T Z, Zhang F R, Xie Z, et al. 2019. Spatial pattern evolution of rural settlements in mountainous areas of ethnic minorities in Yunnan Province under background of precise poverty alleviation. Transactions of the Chinese Society of Agricultural Engineering, 35(9): 246-254. (in Chinese) |
[36] | Zhang J D, Mei Z X, Lv J H, et al. 2020. Simulating multiple land use scenarios based on the FLUS model considering spatial autocorrelation. Journal of Geo-information Science, 22(3): 531-542. (in Chinese) |
[1] | LIU Yujie, SHI Jinlian, ZHENG Yaomin, HUANG Xiankai. The Evolution Pattern and Simulation of Land Use in the Beijing Municipal Administrative Center (Tongzhou District) [J]. Journal of Resources and Ecology, 2022, 13(2): 270-284. |
[2] | ZHANG Biao, SHI Yunting, WANG Shuang. A Review on the Driving Mechanisms of Ecosystem Services Change [J]. Journal of Resources and Ecology, 2022, 13(1): 68-79. |
[3] | LIU Moucheng, BAI Yunxiao, SU Boru. Analysis of the Hotspots of Ecological Compensation Research in China in the Past 20 Years based on a Bibliometric Study [J]. Journal of Resources and Ecology, 2022, 13(1): 80-92. |
[4] | WANG Baixue, CHENG Weiming, LAN Shengxin. Impact of Land Use Changes on Habitat Quality in Altay Region [J]. Journal of Resources and Ecology, 2021, 12(6): 715-728. |
[5] | TIAN Jinghan, GUO Chenchen, WANG Jianhua. Quantitative Assessment of the Ecological Vulnerability of Baiyangdian Wetlands in the North China Plain [J]. Journal of Resources and Ecology, 2021, 12(6): 814-821. |
[6] | LI Qingnan, LIANG Yinghui, MU Dan, YAO Dandan. Diversity of Plant Resources in Qunli National Urban Wetland Park in Harbin, China [J]. Journal of Resources and Ecology, 2021, 12(6): 822-828. |
[7] | MIN Qingwen. Agri-cultural Heritage: An Interdisciplinary Field with Development Prospects [J]. Journal of Resources and Ecology, 2021, 12(4): 437-443. |
[8] | LIU Moucheng, BAI Yunxiao, YANG Lun, WANG Bojie. Calculation of Ecological Compensation Standards for the Kuancheng Traditional Chestnut Cultivation System [J]. Journal of Resources and Ecology, 2021, 12(4): 471-479. |
[9] | GU Xingguo, JIAO Wenjun, SUN Yehong, WANG Bin. Conservation of the Important Agricultural Heritage Systems in the Economically Developed Area:Experiences, Problems and Solutions—A Case Study of Zhejiang Province [J]. Journal of Resources and Ecology, 2021, 12(4): 513-521. |
[10] | WANG Guoping, YANG Lun, LIU Moucheng, LI Zhidong, HE Siyuan, MIN Qingwen. The Role of Local Knowledge in the Risk Management of Extreme Climates in Local Communities: A Case Study in a Nomadic NIAHS Site [J]. Journal of Resources and Ecology, 2021, 12(4): 532-542. |
[11] | ZHANG Yongxun, HE Lulu. Protecting Important Agricultural Heritage Systems (IAHS) by Industrial Integration Development (IID): Practices from China [J]. Journal of Resources and Ecology, 2021, 12(4): 555-566. |
[12] | LI Xuemei, LIU Qian, HAN Jie, YUAN Ping, LI Yamin. Analysis of the Spatio-temporal Evolution of Land Intensive Use and Land Ecological Security in Tianjin from 1980 to 2019 [J]. Journal of Resources and Ecology, 2021, 12(3): 367-375. |
[13] | XIE Hualin, CHEN Qianru. Land Use and Ecological Civilization: A Collection of Empirical Studies [J]. Journal of Resources and Ecology, 2021, 12(2): 137-142. |
[14] | SHI Jiaying, HE Yafen. Evolution Characteristics of Urban Land Use Efficiency under Environmental Constraints in China [J]. Journal of Resources and Ecology, 2021, 12(2): 143-154. |
[15] | HE Yafen. Spatial Behavior Characteristics of Land Use based on Fractal Theory: Taking Poyang Lake Area as an Example [J]. Journal of Resources and Ecology, 2021, 12(2): 192-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||