Journal of Resources and Ecology ›› 2022, Vol. 13 ›› Issue (2): 186-195.DOI: 10.5814/j.issn.1674-764x.2022.02.002
• Ecosystem and Climate Change • Previous Articles Next Articles
SUN Ziyu1,2(), WANG Junbang1,*(
)
Received:
2021-04-30
Accepted:
2021-07-16
Online:
2022-03-30
Published:
2022-03-09
Contact:
WANG Junbang
About author:
SUN Ziyu, E-mail: sunzy.18s@igsnrr.ac.cn
Supported by:
SUN Ziyu, WANG Junbang. The 30m-NDVI-based Alpine Grassland Changes and Climate Impacts in the Three-River Headwaters Region on the Qinghai-Tibet Plateau from 1990 to 2018[J]. Journal of Resources and Ecology, 2022, 13(2): 186-195.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2022.02.002
NDVI | Area (km2) | Percentage (%) |
---|---|---|
< 0.1 | 1410.9 | 15.7 |
0.1-0.4 | 3155.8 | 46.3 |
0.4-0.6 | 2249.3 | 33.0 |
> 0.6 | 340.8 | 5.0 |
Total | 6816.07 | 100 |
Table 1 The frequency of the mean NDVI from 1990 to 2018 in the Three-River Headwaters region
NDVI | Area (km2) | Percentage (%) |
---|---|---|
< 0.1 | 1410.9 | 15.7 |
0.1-0.4 | 3155.8 | 46.3 |
0.4-0.6 | 2249.3 | 33.0 |
> 0.6 | 340.8 | 5.0 |
Total | 6816.07 | 100 |
Fig. 4 Interannual changes of NDVI and its linear regression for the whole period (a) and the two stages (b) before and after 2005 in the period from 1990 to 2018 in the Three-River Headwaters region on Qinghai-Tibet Plateau
Fig. 5 Interannual changes of NDVI for the grassland with higher, median and lower coverage fractions of the wetland in the period from 1990 to 2018 in the Three-River Headwaters region Note: The abbreviations HFC, MFC and LFC are for higher, median and lower fractions of grassland coverage, respectively.
Fig. 7 Inter-annual changes in annual total precipitation and annual mean air temperature in the period from 1990 to 2018 in the Three-River Headwater region
Fig. 8 Interannual changes of precipitation and air temperature for the grassland with higher, median and lower coverage fractions and the wetland in the period from 1990 to 2018 in the Three-River Headwaters region. Note: The HFC, MFC and LFC indicate higher, median and lower fractions of grassland coverage, respectively.
Fig. 9 Multiple correlation coefficients from the linear regression for the NDVI with the climatic factors time series from 1990 to 2018 for each of the major vegetation types in the Three-River Headwaters region.
Region | LUCC | y=a1x1+b1 (Temperature) | y=a2x2+b2 (Precipitation) | y=a3x3+a4x4+b3 (Temperature + Precipitation) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a1 | R2 | P | a2 | R2 | P | a3 | P | a4 | P | R2 | ||
Lancang River Park | HFC | 0.135 | 0.018 | 0.486 | -0.305 | 0.093 | 0.104 | 0.307 | 0.164 | -0.343 | 0.122 | 0.106 |
MFC | 0.306 | 0.094 | 0.106 | 0.134 | 0.018 | 0.189 | 0.269 | 0.225 | -0.259 | 0.243 | 0.072 | |
LFC | 0.077 | 0.006 | 0.691 | -0.158 | 0.061 | 0.158 | 0.211 | 0.342 | -0.272 | 0.223 | 0.062 | |
Wetland | 0.117 | 0.014 | 0.545 | -0.269 | 0.073 | 0.157 | 0.265 | 0.224 | -0.311 | 0.155 | 0.089 | |
Whole | 0.115 | 0.013 | 0.552 | -0.285 | 0.070 | 0.134 | 0.269 | 0.222 | -0.313 | 0.158 | 0.087 | |
Yangtze River Park | HFC | 0.341 | 0.116 | 0.071 | 0.069 | 0.005 | 0.721 | 0.404 | 0.051 | -0.162 | 0.418 | 0.139 |
MFC | 0.392 | 0.154 | 0.036 | 0.280 | 0.078 | 0.141 | 0.391 | 0.050 | 0.003 | 0.988 | 0.154 | |
LFC | 0.363 | 0.138 | 0.043 | 0.201 | 0.041 | 0.295 | 0.398 | 0.042 | -0.100 | 0.631 | 0.140 | |
Wetland | 0.374 | 0.140 | 0.046 | 0.146 | 0.021 | 0.451 | 0.436 | 0.033 | -0.165 | 0.403 | 0.163 | |
Whole | 0.341 | 0.116 | 0.041 | 0.136 | 0.019 | 0.481 | 0.323 | 0.054 | -0.005 | 0.760 | 0.098 | |
Yellow River Park | HFC | 0.387 | 0.150 | 0.038 | 0.009 | 0.008 | 0.644 | 0.390 | 0.046 | -0.007 | 0.969 | 0.150 |
MFC | 0.424 | 0.180 | 0.022 | 0.266 | 0.071 | 0.163 | 0.347 | 0.839 | 0.180 | 0.360 | 0.207 | |
LFC | 0.405 | 0.164 | 0.029 | 0.236 | 0.056 | 0.219 | 0.333 | 0.100 | 0.171 | 0.388 | 0.188 | |
Wetland | 0.355 | 0.420 | 0.046 | -0.104 | 0.011 | 0.589 | 0.452 | 0.032 | -0.219 | 0.283 | 0.165 | |
Whole | 0.404 | 0.163 | 0.030 | 0.122 | 0.015 | 0.529 | 0.395 | 0.048 | 0.021 | 0.916 | 0.164 | |
Three-River Headwater region | HFC | 0.406 | 0.165 | 0.029 | -0.114 | 0.013 | 0.555 | 0.540 | 0.009 | -0.295 | 0.137 | 0.234 |
MFC | 0.456 | 0.207 | 0.013 | 0.084 | 0.007 | 0.665 | 0.505 | 0.014 | -0.117 | 0.544 | 0.219 | |
LFC | 0.363 | 0.202 | 0.043 | -0.015 | 0.002 | 0.739 | 0.441 | 0.035 | -0.186 | 0.357 | 0.160 | |
Wetland | 0.304 | 0.223 | 0.023 | -0.168 | 0.028 | 0.384 | 0.457 | 0.026 | -0.362 | 0.073 | 0.200 | |
Whole | 0.403 | 0.162 | 0.030 | -0.076 | 0.017 | 0.397 | 0.518 | 0.013 | -0.263 | 0.185 | 0.218 |
Table 2 Correlation between NDVI and climatic factors in the Three-Rivers Headwater region
Region | LUCC | y=a1x1+b1 (Temperature) | y=a2x2+b2 (Precipitation) | y=a3x3+a4x4+b3 (Temperature + Precipitation) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a1 | R2 | P | a2 | R2 | P | a3 | P | a4 | P | R2 | ||
Lancang River Park | HFC | 0.135 | 0.018 | 0.486 | -0.305 | 0.093 | 0.104 | 0.307 | 0.164 | -0.343 | 0.122 | 0.106 |
MFC | 0.306 | 0.094 | 0.106 | 0.134 | 0.018 | 0.189 | 0.269 | 0.225 | -0.259 | 0.243 | 0.072 | |
LFC | 0.077 | 0.006 | 0.691 | -0.158 | 0.061 | 0.158 | 0.211 | 0.342 | -0.272 | 0.223 | 0.062 | |
Wetland | 0.117 | 0.014 | 0.545 | -0.269 | 0.073 | 0.157 | 0.265 | 0.224 | -0.311 | 0.155 | 0.089 | |
Whole | 0.115 | 0.013 | 0.552 | -0.285 | 0.070 | 0.134 | 0.269 | 0.222 | -0.313 | 0.158 | 0.087 | |
Yangtze River Park | HFC | 0.341 | 0.116 | 0.071 | 0.069 | 0.005 | 0.721 | 0.404 | 0.051 | -0.162 | 0.418 | 0.139 |
MFC | 0.392 | 0.154 | 0.036 | 0.280 | 0.078 | 0.141 | 0.391 | 0.050 | 0.003 | 0.988 | 0.154 | |
LFC | 0.363 | 0.138 | 0.043 | 0.201 | 0.041 | 0.295 | 0.398 | 0.042 | -0.100 | 0.631 | 0.140 | |
Wetland | 0.374 | 0.140 | 0.046 | 0.146 | 0.021 | 0.451 | 0.436 | 0.033 | -0.165 | 0.403 | 0.163 | |
Whole | 0.341 | 0.116 | 0.041 | 0.136 | 0.019 | 0.481 | 0.323 | 0.054 | -0.005 | 0.760 | 0.098 | |
Yellow River Park | HFC | 0.387 | 0.150 | 0.038 | 0.009 | 0.008 | 0.644 | 0.390 | 0.046 | -0.007 | 0.969 | 0.150 |
MFC | 0.424 | 0.180 | 0.022 | 0.266 | 0.071 | 0.163 | 0.347 | 0.839 | 0.180 | 0.360 | 0.207 | |
LFC | 0.405 | 0.164 | 0.029 | 0.236 | 0.056 | 0.219 | 0.333 | 0.100 | 0.171 | 0.388 | 0.188 | |
Wetland | 0.355 | 0.420 | 0.046 | -0.104 | 0.011 | 0.589 | 0.452 | 0.032 | -0.219 | 0.283 | 0.165 | |
Whole | 0.404 | 0.163 | 0.030 | 0.122 | 0.015 | 0.529 | 0.395 | 0.048 | 0.021 | 0.916 | 0.164 | |
Three-River Headwater region | HFC | 0.406 | 0.165 | 0.029 | -0.114 | 0.013 | 0.555 | 0.540 | 0.009 | -0.295 | 0.137 | 0.234 |
MFC | 0.456 | 0.207 | 0.013 | 0.084 | 0.007 | 0.665 | 0.505 | 0.014 | -0.117 | 0.544 | 0.219 | |
LFC | 0.363 | 0.202 | 0.043 | -0.015 | 0.002 | 0.739 | 0.441 | 0.035 | -0.186 | 0.357 | 0.160 | |
Wetland | 0.304 | 0.223 | 0.023 | -0.168 | 0.028 | 0.384 | 0.457 | 0.026 | -0.362 | 0.073 | 0.200 | |
Whole | 0.403 | 0.162 | 0.030 | -0.076 | 0.017 | 0.397 | 0.518 | 0.013 | -0.263 | 0.185 | 0.218 |
[1] |
Bao G, Bao Y H, Sanjjava A, et al. 2015. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale. International Journal of Climatology, 35(14): 4293-4306.
DOI URL |
[2] |
Chen C, Li T J, Sivakumar B, et al. 2020. Attribution of growing season vegetation activity to climate change and human activities in the Three-River Headwaters Region, China. Journal of Hydroinformatics, 22(1): 186-204.
DOI URL |
[3] |
Chen T T, Yi G H, Zhang T B, et al. 2019. A method for determining vegetation growth process using remote sensing data: A case study in the Three-River Headwaters Region, China. Journal of Mountain Science, 16(9): 2001-2014.
DOI URL |
[4] |
Chu H J, Ali M Z, Burbey T J. 2021. Spatio-temporal data fusion for fine-resolution subsidence estimation. Environmental Modelling & Software, 137(2): 104975. DOI: 10.1016/j.envsoft.2021.104975.
DOI |
[5] | Fang J Y, Piao S L, He J S, et al. 2003 Vegetation activity in China has been increasing in the last 20 years. Science in China (Earth Sciences), 33(6): 554-565, 578-579. (in Chinese) |
[6] |
Geng L Y, Ma M G, Wang X F, et al. 2014. Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe River Basin, China. Remote Sensing, 6(3): 2024-2049.
DOI URL |
[7] | Han F X. 2020. Variation characteristics of temperature in Sanjiangyuan Area in 1961-2016. Qinghai Prataculture, 29(4): 38-44. (in Chinese) |
[8] | He N P, Xu L, He H L. 2020. The methods of evaluation ecosystem quality: Ideal reference and key parameters. Acta Ecologica Sinica, 40(6): 1877-1886. (in Chinese) |
[9] |
He Q, Dai X A, Chen S Q. 2020. Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau, China. Journal of Arid Land, 12(5): 865-886.
DOI URL |
[10] |
He Y Q, Bo Y C, Jong R D, et al. 2015. Comparison of vegetation phenological metrics extracted from GIMMS NDVIg and MERIS MTCI data sets over China. International Journal of Remote Sensing, 36(1): 300-317.
DOI URL |
[11] | Li H X, Liu G H, Fu B J. 2011. Response of vegetation to climate change and human activity based on NDVI in the Three-River Headwaters region. Acta Ecologica Sinica, 31(19): 5495-5504. (in Chinese) |
[12] | Li X B, Shi P J. 2000. Sensitivity analysis of variation in NDVI, temperature and precipitation in typical vegetation types across China. Acta Phytoecologica Sinica, (3): 379-382. (in Chinese) |
[13] |
Liao C H, Wang J F, Pritchard I, et al. 2017. A spatio-temporal data fusion model for generating NDVI time series in heterogeneous regions. Remote Sensing, 9(11): 1125. DOI: 10.3390/rs9111125.
DOI URL |
[14] | Liu J Y, Liu M L, Zhuang D F, et al. 2003. Study on spatial pattern of land-use change in China during 1995-2000. Science in China (Series D: Earth Sciences), 46(4): 373-384, 420-422. |
[15] | Liu X F, Yang Y, Ren Z Y, et al. 2013. Changes of vegetation coverage in the Loess Plateau in 2000-2009. Journal of Desert Research, 33(4): 1244-1249. (in Chinese) |
[16] |
Liu X F, Zhang J S, Zhu X F, et al. 2014. Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000-2011. Journal of Geographical Sciences, 24(2): 288-302.
DOI URL |
[17] | Liu X M, Gao X H, Ma Y C. 2017. Spatio-temporal evolution of vegetation coverage in Qinghai Province,China during the periods from 2002 to 2015. Arid Zone Research, 34(6): 1345-1352. (in Chinese) |
[18] | Ma X C. 2020. Fight the battle of soil and water conservation to ensure the stability of the “China Water Tower”. China Soil and Water Conservation, (9): 7-10. (in Chinese) |
[19] |
Nengzouzam G, Hodam S, Bandyopadhyay A, et al. 2019. Spatial and temporal trends in high resolution gridded temperature data over India. Asia-Pacific Journal of Atmospheric Sciences, 55(4): 761-772.
DOI |
[20] | Rao P Z, Wang Y C, Wang F. 2021. Analysis on the NDVI change and influence factors of vegetation cover in the Three-river Headwater region. Acta Agrestia Sinica, 29(3): 572-582. (in Chinese) |
[21] |
Richardson M, Cowtan K, Millar R J. 2018. Global temperature definition affects achievement of long-term climate goals. Environmental Research Letters, 13(5): 054004. DOI: 10.1088/1748-9326/aab305.
DOI URL |
[22] | Shao Q Q, Fan J W, Liu J Y, et al. 2016. Assessment on the effects of the first-stage ecological conservation and restoration project in Sanjiangyuan region. Acta Geographica Sinica, 71(1): 3-20. (in Chinese) |
[23] | Tu J, Shi C C. 1998. Study on the degeneration of alpine meadow grassland in Qingzhang Plateau with remote sensing techniques. Acta Agrestia Sinca, 6(3): 226-233. (in Chinese) |
[24] | Wang J, Zhang X, Gao Y. 2021. Research status and prospects of the relationship between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau. Earth Science Frontiers, 28(4): 70-82. (in Chinese) |
[25] |
Wang S Q, Wang J B, Zhang L M, et al. 2019. A National Key R&D Program: Technologies and guidelines for monitoring ecological quality of terrestrial ecosystems in China. Journal of Resources and Ecology, 10(2): 105-111. (in Chinese)
DOI URL |
[26] | Wang Z, Yan W D, Liu S G, et al. 2017. Spatial-temporal characteristics of three main land-use types in China based on MODIS data. Acta Ecologica Sinica, 37(10): 3295-3301. (in Chinese) |
[27] | Wei Y L, Han F X, Xie W X. 2015. Analysis on change characteristics of precipitation in the three river headwaters region in recent 53 years. Science and Technology of Qinghai Agriculture and Forestry, (2): 45-48. (in Chinese) |
[28] |
Wu Z T, Yu L, Zhang X Y, et al. 2019. Satellite-based large-scale vegetation dynamics in ecological restoration programmes of Northern China. International Journal of Remote Sensing, 40(5-6): 2296-2312.
DOI URL |
[29] | Xie L, Wen G, Fu Z B. 2002. The response of the vegetation seasonal variability and its spatial pattern to climate variation in China multi-year average. Acta Meteorological Sinica, 60(2): 181-187, 261. (in Chinese) |
[30] |
Xu Y F, Yang J, Chen Y N. 2016. NDVI-based vegetation responses to climate change in an arid area of China. Theoretical and Applied Climatology, 126(1-2): 213-222.
DOI URL |
[31] | Yang J P, Ding Y J, Chen R S. 2005. NDVI reflection of alpine vegetation changes in the source regions of the Yangtze and Yellow rivers. Acta Geographica Sinica, 60(3): 467-478. (in Chinese) |
[32] | Zhai P M, Yu R, Zhou B Q, et al. 2017. Research progress in impact of 1.5 ℃ global warming on global and regional scales. Progressus Inquisitiones de Mutatione Climatis, 13(5): 465-472. (in Chinese) |
[33] | Zhang Q, Luo J, Zhou X, et al. 2020. Dynamic change of NDVI and response to climate impact from 2000 to 2017 in Hunan Province. Journal of Central South University of Forestry & Technology, 40(12): 94-103. |
[34] |
Zhao J, Huang S Z, Huang Q, et al. 2020. Time-lagged response of vegetation dynamics to climatic and teleconnection factors. CATENA, 189: 104474. DOI: 10.1016/j.catena.2020.104474.
DOI URL |
[35] |
Zheng Y T, Han J C, Huang Y F, et al. 2018. Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China. Ecological Indicators, 92: 18-29.
DOI URL |
[36] | Zheng Y T, Huang Y F, Wang K Y. 2018. Response of vegetation to water stress in the Three-River Headwaters Region of China. Journal of Basic Science and Engineering, 26(2): 249-262. (in Chinese) |
[37] | Zhou C P, Ouyang H, Cao Y, et al. 2008. Estimation of net primary productivity in middle reaches of Yarlung Zangbo River and its two tributaries. The Journal of Applied Ecology, 19(5): 1071-1076. |
[38] | Zhou X Y, Shi H D, Wang X R. 2014. Impact of climate change and human activities on vegetation coverage in the Mongolian Plateau. Arid Zone Research, 31(4): 604-610. |
[1] | Raju RAI, ZHANG Yili, LIU Linshan, Paras Bikram SINGH, Basanta PAUDEL, Bipin Kumar ACHARYA, Narendra Raj KHANAL. Predicting the Impact of Climate Change on Vulnerable Species in Gandaki River Basin, Central Himalayas [J]. Journal of Resources and Ecology, 2022, 13(2): 173-185. |
[2] | ZHANG Xianzhou, LI Meng, WU Jianshuang, HE Yongtao, NIU Ben. Alpine Grassland Aboveground Biomass and Theoretical Livestock Carrying Capacity on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2022, 13(1): 129-141. |
[3] | HE Yuchuan, XIONG Junnan, CHENG Weiming, YE Chongchong, HE Wen, YONG Zhiwei, TIAN Jie. Spatiotemporal Pattern and Driving Force Analysis of Vegetation Variation in Altay Prefecture based on Google Earth Engine [J]. Journal of Resources and Ecology, 2021, 12(6): 729-742. |
[4] | TIAN Jie, XIONG Junnan, ZHANG Yichi, CHENG Weiming, HE Yuchuan, YE Chongchong, HE Wen. Quantitative Assessment of the Effects of Climate Change and Human Activities on Grassland NPP in Altay Prefecture [J]. Journal of Resources and Ecology, 2021, 12(6): 743-756. |
[5] | ZHAO Xuanlan, WANG Junbang, YE Hui, MUHAMMAD Amir, WANG Shaoqiang. The Bowen Ratio of an Alpine Grassland in Three-River Headwaters, Qinghai-Tibet Plateau, from 2001 to 2018 [J]. Journal of Resources and Ecology, 2021, 12(3): 305-318. |
[6] | SHI Peili, WU Ning, Gopal S. RAWAT. The Distribution Patterns of Timberline and Its Response to Climate Change in the Himalayas [J]. Journal of Resources and Ecology, 2020, 11(4): 342-348. |
[7] | SONG Minghua, LI Meng, HUO Jiajuan, WU Liang, ZHANG Xianzhou. Multifunctionality and Thresholds of Alpine Grassland on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 263-271. |
[8] | CAO Yanan, ZHANG Xianzhou, NIU Ben, HE Yongtao. Comparison of Methods for Evaluating the Forage-livestock Balance of Alpine Grasslands on the Northern Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 272-282. |
[9] | WANG Xiangtao, ZHANG Xianzhou, WANG Junhao, NIU Ben. Variations in the Drought Severity Index in Response to Climate Change on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 304-314. |
[10] | XIANG Ling, GAO Xiang, PENG Yuhui, LIANG Jie. Coupling the Occurrence of Correlative Plant Species to Predict the Habitat Suitability for Lesser White-fronted Goose (Anser erythropus) under Climate Change: A Case Study in the Middle and Lower Reaches of the Yangtze River [J]. Journal of Resources and Ecology, 2020, 11(2): 140-149. |
[11] | Raju RAI, Basanta PAUDEL, GU Changjun, Narendra Raj KHANAL. Change in the Distribution of National Bird (Himalayan Monal) Habitat in Gandaki River Basin, Central Himalayas [J]. Journal of Resources and Ecology, 2020, 11(2): 223-231. |
[12] | LIU Yuanzhe, SONG Wei, ZHAO Dongsheng, GAO Jiangbo. Progress in Research on the Influences of Climatic Changes on the Industrial Economy in China [J]. Journal of Resources and Ecology, 2020, 11(1): 1-12. |
[13] | Eric Ariel L. SALAS, Raul VALDEZ, Stefan MICHEL, Kenneth G. BOYKIN. Response of Asiatic ibex (Capra sibirica) under Climate Change Scenarios [J]. Journal of Resources and Ecology, 2020, 11(1): 27-37. |
[14] | WANG Zhao, WANG Junbang. Changes of Soil Erosion and Possible Impacts from Ecosystem Recovery in the Three-River Headwaters Region, Qinghai, China from 2000 to 2015 [J]. Journal of Resources and Ecology, 2019, 10(5): 461-471. |
[15] | YANG Yihan,WANG Junbang,LIU Peng,LU Guangxin,LI Yingnian. Climatic Changes Dominant Interannual Trend in Net Primary Productivity of Alpine Vulnerable Ecosystems [J]. Journal of Resources and Ecology, 2019, 10(4): 379-388. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||