Journal of Resources and Ecology ›› 2022, Vol. 13 ›› Issue (1): 107-112.DOI: 10.5814/j.issn.1674-764x.2022.01.012
• Restoration Ecology and Ecological Engineering • Previous Articles Next Articles
HE Yongtao1,2,*(), WANG Fang1,2, NIU Ben1, WANG Zhipeng1,2, LI Meng1,2, SHI Peili1,2, ZHANG Xianzhou1,2
Received:
2021-07-25
Accepted:
2021-10-21
Online:
2022-01-30
Published:
2022-01-08
Contact:
HE Yongtao
Supported by:
HE Yongtao, WANG Fang, NIU Ben, WANG Zhipeng, LI Meng, SHI Peili, ZHANG Xianzhou. The Facilitation of Restoration by Cushion Plant Androsace tapete in a Degraded Alpine Grassland[J]. Journal of Resources and Ecology, 2022, 13(1): 107-112.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2022.01.012
Species | Coverage (%) | Species | Coverage (%) |
---|---|---|---|
Androsace tapete | 6.88 | Leontopodium sp. | 0.59 |
Gentiana squarrosa | 6.40 | Kobresia pygmae | 0.53 |
Artemisia desertorum | 4.58 | Stellera chamaejasme | 0.39 |
Carex atrofusca | 4.06 | Koeleria cristata | 0.37 |
Pleurospermum hookeri | 3.68 | Aster flaccidus | 0.33 |
Potentilla nivea | 2.62 | Taraxacum sp. | 0.23 |
Anaphalis sp. | 2.01 | Pedicularis kansuensis | 0.20 |
Kobresia humilis | 1.37 | Veronica biloba | 0.17 |
Poa sp. | 1.20 | Unidentified species | 0.16 |
Stipa aliena | 1.20 | Kobresia robusta | 0.16 |
Polygonum macrophyllum | 1.13 | Iris sp. | 0.09 |
Silene repens | 1.01 | Allium sp. | 0.08 |
Oxytropis sp. | 0.90 | Anemone obtusiloba | 0.08 |
Androsace mariae | 0.89 | Thalictrum sp. | 0.08 |
Stipa purpurea | 0.76 | Rhodiola sp. | 0.06 |
Saussurea sp. | 0.60 | Microula sikkimensis | 0.04 |
Table 1 Community species composition in the sampled plots
Species | Coverage (%) | Species | Coverage (%) |
---|---|---|---|
Androsace tapete | 6.88 | Leontopodium sp. | 0.59 |
Gentiana squarrosa | 6.40 | Kobresia pygmae | 0.53 |
Artemisia desertorum | 4.58 | Stellera chamaejasme | 0.39 |
Carex atrofusca | 4.06 | Koeleria cristata | 0.37 |
Pleurospermum hookeri | 3.68 | Aster flaccidus | 0.33 |
Potentilla nivea | 2.62 | Taraxacum sp. | 0.23 |
Anaphalis sp. | 2.01 | Pedicularis kansuensis | 0.20 |
Kobresia humilis | 1.37 | Veronica biloba | 0.17 |
Poa sp. | 1.20 | Unidentified species | 0.16 |
Stipa aliena | 1.20 | Kobresia robusta | 0.16 |
Polygonum macrophyllum | 1.13 | Iris sp. | 0.09 |
Silene repens | 1.01 | Allium sp. | 0.08 |
Oxytropis sp. | 0.90 | Anemone obtusiloba | 0.08 |
Androsace mariae | 0.89 | Thalictrum sp. | 0.08 |
Stipa purpurea | 0.76 | Rhodiola sp. | 0.06 |
Saussurea sp. | 0.60 | Microula sikkimensis | 0.04 |
Sample area | pH | Organic matter (g kg-1) | Total N (g kg-1) | NO3- (mg kg-1) | NH4+ (mg kg-1) | Available P (mg kg-1) | Available K (mg kg-1) | Slow-acting K (mg kg-1) |
---|---|---|---|---|---|---|---|---|
Underneath A. tapete | 6.26±0.06a | 28.93±6.78a | 1.49±0.23a | 0.24±0.03a | 1.40±0.21a | 5.72±1.72a | 68.52±12.99a | 463.31±78.70a |
Outside A. tapete | 6.19±0.20a | 24.89±7.96b | 1.25±0.38b | 0.34±0.08b | 0.98±0.24b | 4.46±2.29a | 49.54±7.12b | 311.83±20.47b |
Table 2 Soil nutrients underneath and outside the cushion plant A. tapete
Sample area | pH | Organic matter (g kg-1) | Total N (g kg-1) | NO3- (mg kg-1) | NH4+ (mg kg-1) | Available P (mg kg-1) | Available K (mg kg-1) | Slow-acting K (mg kg-1) |
---|---|---|---|---|---|---|---|---|
Underneath A. tapete | 6.26±0.06a | 28.93±6.78a | 1.49±0.23a | 0.24±0.03a | 1.40±0.21a | 5.72±1.72a | 68.52±12.99a | 463.31±78.70a |
Outside A. tapete | 6.19±0.20a | 24.89±7.96b | 1.25±0.38b | 0.34±0.08b | 0.98±0.24b | 4.46±2.29a | 49.54±7.12b | 311.83±20.47b |
[1] |
Arroyo M T K, Cavieres L A, Peñaloza A, et al. 2003. Positive associations between the cushion plant Azorella monantha (Apiaceae) and alpine plant species in the Chilean Patagonian Andes. Plant Ecology, 169(1): 121-129.
DOI URL |
[2] |
Badano E I, Jones C G, Cavieres L A, et al. 2006. Assessing impacts of ecosystem engineers on community organization: A general approach illustrated by effects of a high-Andean cushion plant. Oikos, 115(2): 369-385.
DOI URL |
[3] |
Butterfield B J, Cavieres L A, Callaway R M, et al. 2013. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecology Letters, 16(4): 478-486.
DOI PMID |
[4] |
Cavieres L A, Badano E I, Sierra-Almeida A, et al. 2006. Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytologist, 169(1): 59-69.
DOI URL |
[5] |
Cavieres L A, Brooker R W, Butterfield B J, et al. 2014. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 17(2): 193-202.
DOI URL |
[6] | Cavieres L A, Quiroz C L, Molina-Montenegro M A. 2008. Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: Are there differences between nurses? Functional Ecology, 22(1): 148-156. |
[7] |
Chen J G, Schöb C, Zhheou Z, et al. 2015a. Cushion plants can have a positive effect on diversity at high elevations in the Himalayan Hengduan Mountains. Journal of Vegetation Science, 26(4): 768-777.
DOI URL |
[8] | Chen J G, Yang Y, Stöcklin J, et al. 2015b. Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecology & Diversity, 8(2): 199-210. |
[9] |
Erfanzadeh R, Hazhir S, Jafari M. 2020. Effect of cushion plants on the soil seed bank in overgrazed semiarid regions. Land Degradation & Development, 31(8): 990-1000.
DOI URL |
[10] | He Y T, Kueffer C, Shi P L, et al. 2014a. Variation of biomass and morphology of the cushion plant Androsace tapete along an elevational gradient in the Tibetan Plateau. Plant Species Biology, 29(3): E64-E71. |
[11] | He Y T, Shi P L, Yan W. 2010. Ecosystem engineering of cushion plants in alpine plant community: A review. Chinese Journal of Ecology, 29(6): 1221-1227. (in Chinese) |
[12] | He Y T, Shi P L, Zhang X Z, et al. 2013. Elevational distribution of cushion plant Androsace tapete in the southern slope of Nyainqentanglha Mountains, Tibetan Plateau. Journal of Mountain Science, 31(6): 641-646. (in Chinese) |
[13] |
He Y T, Xu X L, Kueffer C, et al. 2014b. Leaf litter of a dominant cushion plant shifts nitrogen mineralization to immobilization at high but not low temperature in an alpine meadow. Plant and Soil, 383(1-2): 415-426.
DOI URL |
[14] | Huang R F, Wang W Y. 1991. The flora and community succession of cushion plant in Qinghai-Xizang Plateau. Acta Biologica Plateau Sinica, 10: 15-26. (in Chinese) |
[15] |
Kikvidze Z, Brooker R W, Butterfield B J, et al. 2015. The effects of foundation species on community assembly: A global study on alpine cushion plant communities. Ecology, 96(8): 2064-2069.
PMID |
[16] |
Koch O, Tscherko D, Kandeler E. 2007. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochemical Cycles, 21(4): GB4017. DOI: 10.1029/2007GB002983.
DOI |
[17] | Körner C. 2003. The alpine life zone:Alpine plant life. Berlin, Germany: Springer Berlin Heidelberg. |
[18] | Li B S, Wang J T, Li S Y. 1987. The floristic features and geographic distribution of the cushion plant in Xizang. Mountain Research, 5(1): 14-20. (in Chinese) |
[19] | Li B S, Zhang J W, Wang J T, et al. 1985. The alpine cushion vegetation of Xizang. Acta Botanica Sinica, 27(3): 311-317. (in Chinese) |
[20] |
Li R, Luo T, Tang Y, et al. 2013. The altitudinal distribution center of a widespread cushion species is related to an optimum combination of temperature and precipitation in the central Tibetan Plateau. Journal of Arid Environments, 88: 70-77.
DOI URL |
[21] | Liu X J, Chen N L, Tian Q. 2014a. Comparison on soil microenvironment modification of two cushion species. Acta Prataculturae Sinica, 23(1): 123-130. (in Chinese) |
[22] | Liu X J, Chen N L, Tian Q. 2014b. Influence of altitude onqiyi soil microenvironment modification of Thylacospermum caespitosum. Journal of Desert Research, 34(1): 191-196. (in Chinese) |
[23] | Liu X J, Sun X G, Tian Q. 2016. Effect of the cushion plant Thylacospermum caespitosum Camb. on species diversity within a community. Acta Ecologica Sinica, 36(10): 2905-2913. (in Chinese) |
[24] | Magurran A E. 1988. Ecological diversity and its measurement. Princeton, New Jersey, USA: Princeton University Press. |
[25] |
Meng F S, Shi P L, Yan W, et al. 2013. The function of cushion plants in alpine ecosystems: Patterns and mechanisms. Chinese Journal of Applied and Environmental Biology, 19(4): 561-568. (in Chinese)
DOI URL |
[26] | Ohtsuka T, Hirota M, Zhang X Z, et al. 2008. Soil organic carbon pools in alpine to nival zones along an altitudinal gradient ( 4400-5300 m) on the Tibetan Plateau. Polar Science, 2(4): 277-285. |
[27] |
Padilla F M, Pugnaire F I. 2006. The role of nurse plants in the restoration of degraded environments. Frontiers in Ecology and the Environment, 4(4): 196-202.
DOI URL |
[28] |
Pugnaire F I, Zhang L, Li R C, et al. 2015. No evidence of facilitation collapse in the Tibetan Plateau. Journal of Vegetation Science, 26(2): 233-242.
DOI URL |
[29] |
Reid A M, Lamarque L J, Lortie C J. 2010. A systematic review of the recent ecological literature on cushion plants: Champions of plant facilitation. Web Ecology, 10(1): 44-49.
DOI URL |
[30] |
Sklenář P. 2009. Presence of cushion plants increases community diversity in the high equatorial Andes. Flora-Morphology, Distribution, Functional Ecology of Plants, 204(4): 270-277.
DOI URL |
[31] | Wang F S, He Y T, Shi P L, et al. 2016. Stellera chamaejasme as an indicator for alpine meadow degradation on the Tibetan Plateau. Chinese Journal of Applied and Environmental Biology, 22(4): 567-572. (in Chinese) |
[32] |
Wang Y, Sun J, Liu B Y, et al. 2021. Cushion plants as critical pioneers and engineers in alpine ecosystems across the Tibetan Plateau. Ecology and Evolution, 11: 11554-11558.
DOI URL |
[33] | Yang J, Liu Q R, Wang X T. 2020. Plant community and soil nutrient of alpine meadow in different degradation stages on the Tibetan Plateau, China. Chinese Journal of Applied Ecology, 31(12): 4067-4072. (in Chinese) |
[34] |
Yang Y, Niu Y, Cavieres L A, et al. 2010. Positive associations between the cushion plant Arenaria polytrichoides (Caryophyllaceae) and other alpine plant species increase with altitude in the Sino-Himalayas. Journal of Vegetation Science, 21(6): 1048-1057.
DOI URL |
[35] |
Zeng L Y, Xu L L, Tang S Q, et al. 2010. Effect of sampling strategy on estimation of fine-scale spatial genetic structure in Androsace tapete (Primulaceae), an alpine plant endemic to Qinghai-Tibetan Plateau. Journal of Systematics and Evolution, 48(4): 257-264.
DOI URL |
[36] | Zhan T Y, Hou G, Liu M, et al. 2019. Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau. Pratacultural Science, 36(4): 1010-1021. (in Chinese) |
[37] | Zhang B S, Shi P L, He Y T, et al. 2009. The climate feature of Damxung alpine meadow carbon flux research station on the Tibetan Plateau. Journal of Mountain Science, 27(1): 88-95. (in Chinese) |
[38] | Zhao H W, Guo K, Yang Y, et al. 2015. Age determination and growing patterns of the cushion plant Androsace tapete in the Tibetan Plateau. Journal of Mountain Science, 33(4): 473-479. (in Chinese) |
[1] | WANG Yang, JIANG Xiongbo, WU Dezhi. Species Diversity Characteristics of a Natural Pinus taiwanensis Community with Different Diameter Classes and Forest Densities [J]. Journal of Resources and Ecology, 2020, 11(4): 349-357. |
[2] | DU Wei,WU Shanmei,NIE Cheng,LI Yue,SHAO Rui,LIU Yinghui,SUN Nan. Soil Respiration Dynamics and Influencing Factors in Typical Steppe of Inner Mongolia under Long-term Nitrogen Addition [J]. Journal of Resources and Ecology, 2019, 10(2): 155-162. |
[3] | PENG Zongbo, JIANG Ying. Density Dependence of a Dominant Species and the Effects on Community Diversity Maintainance [J]. Journal of Resources and Ecology, 2016, 7(4): 275-280. |
[4] | LI Jing, MIN Qingwen, LI Wenhua, BAI Yanying, Dhruba Bijaya G. C., YUAN Zheng. Spatial Variability Analysis of Soil Nutrients Based on GIS and Geostatistics: A Case Study of Yisa Township, Yunnan, China [J]. Journal of Resources and Ecology, 2014, 5(4): 348-355. |
[5] | WU Jianshuan, ZHANG Xianzhou, SHEN Zhenxi, SHI Peili, YU Chengqun, SONG Minghua, LI Xiaojia. Species Richness and Diversity of Alpine Grasslands on the Northern Tibetan Plateau:Effects of Grazing Exclusion and Growing Season Precipitation [J]. Journal of Resources and Ecology, 2012, 3(3): 236-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||