Journal of Resources and Ecology ›› 2022, Vol. 13 ›› Issue (1): 34-40.DOI: 10.5814/j.issn.1674-764x.2022.01.004
• Ecosystems in Response to Global Change • Previous Articles Next Articles
ZHANG Lin1,2,*(), YANG Liu1,3, GUO Ying1,3, SHEN Wei1, CUI Guangshuai1,3
Received:
2021-07-29
Accepted:
2021-10-13
Online:
2022-01-30
Published:
2022-01-08
Contact:
ZHANG Lin
Supported by:
ZHANG Lin, YANG Liu, GUO Ying, SHEN Wei, CUI Guangshuai. Leaf Longevity in a Timberline Tree Species Juniperus saltuaria in the Sergymla Mountains, Southeastern Tibet[J]. Journal of Resources and Ecology, 2022, 13(1): 34-40.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2022.01.004
Forest type | Elevation (m) | Stand age (yr) | Mean tree height (m) | Mean DBH (cm) | Basal area (m2 ha-1) | Tree density (trees ha-1) |
---|---|---|---|---|---|---|
Timberline forest | 4425 | 300-400 | 6.0 | 13.3 | 39.8 | 2050 |
Subalpine forest | 4290 | 400-500 | 9.5 | 26.8 | 60.7 | 708 |
Table 1 Stand characteristics for Juniperus saltuaria forests at the two elevations
Forest type | Elevation (m) | Stand age (yr) | Mean tree height (m) | Mean DBH (cm) | Basal area (m2 ha-1) | Tree density (trees ha-1) |
---|---|---|---|---|---|---|
Timberline forest | 4425 | 300-400 | 6.0 | 13.3 | 39.8 | 2050 |
Subalpine forest | 4290 | 400-500 | 9.5 | 26.8 | 60.7 | 708 |
Fig. 3 Variations in leaf longevity among canopy depths for Juniperus saltuaria at different elevations in the Sergymla Mountains Note: Different upper-case letters indicate significant differences among different canopy depths, while different lower-case letters indicate significant differences between different elevations.
Fig. 4 Relationship between leaf longevity and mass-based leaf nitrogen content (Nmass) for Juniperus saltuaria at different elevations in the Sergymla Mountains
No. | Species | Location | Leaf longevity (range)(yr) | Reference |
---|---|---|---|---|
1 | Juniperus saltuaria | Linzhi, Tibet, China | 4.2 (1-8) | This study |
2 | Juniperus scopulorum | Coastal Washington State, USA | 2.5 (1-4) | Pease ( |
3 | Juniperus thurifera | France/Spain | 2.46 (2.0-3.2) | Montesinos et al. ( |
4 | Juniperus monosperma | New Mexico, USA | 6.5 | Wright et al. ( |
5 | Chamaecyparis obtusa | Karakawa, Japan | 3.9 (2.7-5.9) | Miyamoto et al. ( |
6 | Chamaecyparis obtusa | Okuono, Japan | 6.3 (4.6-7.8) | Miyamoto et al. ( |
7 | Thuja plicata | Coastal Washington State, USA | 3.5 (1-7) | Pease ( |
8 | Thuja plicata | Northern Idaho, USA | 8.9 (6.8-10.6) | Harlow et al. ( |
9 | Thuja occidentalis | Wisconsin, USA | 4 | Wright et al. ( |
Mean | 4.7 |
Table 2 Comparisons in leaf longevity for some of Cupressaceae species
No. | Species | Location | Leaf longevity (range)(yr) | Reference |
---|---|---|---|---|
1 | Juniperus saltuaria | Linzhi, Tibet, China | 4.2 (1-8) | This study |
2 | Juniperus scopulorum | Coastal Washington State, USA | 2.5 (1-4) | Pease ( |
3 | Juniperus thurifera | France/Spain | 2.46 (2.0-3.2) | Montesinos et al. ( |
4 | Juniperus monosperma | New Mexico, USA | 6.5 | Wright et al. ( |
5 | Chamaecyparis obtusa | Karakawa, Japan | 3.9 (2.7-5.9) | Miyamoto et al. ( |
6 | Chamaecyparis obtusa | Okuono, Japan | 6.3 (4.6-7.8) | Miyamoto et al. ( |
7 | Thuja plicata | Coastal Washington State, USA | 3.5 (1-7) | Pease ( |
8 | Thuja plicata | Northern Idaho, USA | 8.9 (6.8-10.6) | Harlow et al. ( |
9 | Thuja occidentalis | Wisconsin, USA | 4 | Wright et al. ( |
Mean | 4.7 |
[1] | Boonman A, Pons T L. 2007. Canopy light gradient perception by cytokinin. Plant Signaling & Behavior, 2(6): 489-491. |
[2] |
Ellsworth D S, Reich P B. 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 96(2): 169-178.
DOI PMID |
[3] |
Field C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia, 56(2-3): 341-347.
DOI PMID |
[4] | Field C, Mooney H A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish T J (ed.). On the economy of plant form and function. Cambridge, UK: Cambridge University Press. |
[5] |
Gower S T, Reich P B, Son Y. 1993. Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiology, 12(4): 327-345.
PMID |
[6] |
Harlow B A, Duursma R A, Marshall J D. 2005. Leaf longevity of western red cedar (Thuja plicata) increases with depth in the canopy. Tree Physiology, 25(5): 557-562.
DOI URL |
[7] | He J S, Wang Z H, Wang X P, et al. 2006. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170(4): 835-848. |
[8] |
Kikuzawa K. 1995. Leaf phenology as an optimal strategy for carbon gain in plants. Canadian Journal of Botany, 73(2): 158-163.
DOI URL |
[9] |
Liu X S, Luo T X. 2011. Spatiotemporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergymla Mountains, southeast Tibet. Arctic Antarctic and Alpine Research, 43(2): 229-238.
DOI URL |
[10] |
Liu X S, Nie Y, Luo T X, et al. 2016. Seasonal shift in climatic limiting factors on tree transpiration: Evidence from sap flow observations at alpine treelines in Southeast Tibet. Frontiers in Plant Science, 7: 1018. DOI: 10.3389/fpls.2016.01018.
DOI |
[11] |
Lu X M, Liang E Y, Wang Y F, et al. 2019. Past the climate optimum: Recruitment is declining at the world’s highest juniper shrublines on the Tibetan Plateau. Ecology, 100(2): e02557. DOI: 10.1002/ecy.2557.
DOI URL |
[12] |
Luo T X, Luo J, Pan Y D. 2005. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, eastern Tibetan Plateau. Oecologia, 142(2): 261-273.
DOI URL |
[13] |
Miehe G, Miehe S, Vogel J, et al. 2007. Highest treeline in the Northern Hemisphere found in southern Tibet. Mountain Research and Development, 27(2): 169-173.
DOI URL |
[14] |
Miyamoto K, Okuda S, Inagaki Y, et al. 2013. Within- and between-site variations in leaf longevity in hinoki cypress (Chamaecyparis obtusa) plantations in southwestern Japan. Journal of Forest Research, 18(3): 256-269.
DOI URL |
[15] |
Montesinos D, García-Fayos P, Verdú M. 2010. Relictual distribution reaches the top: Elevation constrains fertility and leaf longevity in Juniperus thurifera. Acta Oecologica, 36(1): 120-125.
DOI URL |
[16] |
Pease V A. 1917. Duration of leaves in evergreens. American Journal of Botany, 4(3): 145-160.
DOI URL |
[17] |
Pérez-Harguindeguy N, Díaz S, Garnier E, et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61: 167-234.
DOI URL |
[18] |
Reich P B, Walters M B, Ellsworth D S. 1997. From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the USA, 94(25): 13730-13734.
DOI URL |
[19] |
Seiwa K. 1999. Changes in leaf phenology are dependent on tree height in Acer mono, a deciduous broad-leaved tree. Annals of Botany, 83(4): 355-361.
DOI URL |
[20] |
Smith L, Primack R B, Zipf L, et al. 2019. Leaf longevity in temperate evergreen species is related to phylogeny and leaf size. Oecologia, 191(3): 483-491.
DOI URL |
[21] |
Tworkoski T, Miller S, Scorza R. 2006. Relationship of pruning and growth morphology with hormone ratios in shoots of pillar and standard peach trees. Journal of Plant Growth Regulation, 25(2): 145-155.
DOI URL |
[22] | Wang X H, Zhang J, Zhang Z X. 2000. Leaf longevity of evergreen broad-leaved species of Tiantong National Forest Park, Zhejiang Province. Acta Phytoecologica Sinica, 24(5): 625-629. (in Chinese) |
[23] |
Wright I J, Reich P B, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature, 428(6985): 821-827.
DOI URL |
[24] |
Yu H Y, Chen Y T, Xu Z Z, et al. 2014. Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol. Chinese Journal of Plant Ecology, 38(10): 1029-1040. (in Chinese)
DOI URL |
[25] |
Zhan F, Yang D M. 2012. Relationships among light conditions, crown structure and branch longevity: A case study in Osmanthus fragrans and Metasequoia glyptostroboides. Acta Ecologica Sinica, 32(3): 984-992. (in Chinese)
DOI URL |
[26] |
Zhang L, Luo T X, Zhu H Z, et al. 2010. Leaf life span as a simple predictor of evergreen forest zonation in China. Journal of Biogeography, 37(1): 27-36.
DOI URL |
[1] | SUN Wei, LI Meng, WANG Junhao, FU Gang. Driving Mechanism of Gross Primary Production Changes and Implications for Grassland Management on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2019, 10(5): 472-480. |
[2] | ZHANG Xianzhou, WANG Ling, HE Yongtao, DU Mingyuan, ZHANG Jing, SHI Peili, YU Chengqun, ZHANG Yangjian. Impact of Water Vapor on Elevation-dependent Climate Change [J]. Journal of Resources and Ecology, 2017, 8(1): 5-9. |
[3] | XU Xia, CHENG Xiao-Li, ZHOU Yan, LUO Yi-Qi, RUAN Hong-Hua, WANG Jia-She. Variation of Soil Labile Organic Carbon Pools along an Elevational Gradient in the Wuyi Mountains, China [J]. Journal of Resources and Ecology, 2010, 1(4): 368-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||