Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (6): 829-839.DOI: 10.5814/j.issn.1674-764x.2021.06.011
• Regional Geography and Ecological Changes • Previous Articles Next Articles
YE Hongtao1,2(), MA Ting1,2,*(
)
Received:
2021-02-14
Accepted:
2021-05-06
Online:
2021-11-30
Published:
2022-01-30
Contact:
MA Ting
About author:
YE Hongtao, E-mail: yeht.19s@igsnrr.ac.cn
Supported by:
YE Hongtao, MA Ting. Changes in the Geographical Distributions of Global Human Settlements[J]. Journal of Resources and Ecology, 2021, 12(6): 829-839.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.06.011
Distance (km) | Area (km²) | ||
---|---|---|---|
1990 | 2000 | 2014 | |
≤ 10 | 21475 | 25655 | 30010 |
≤ 50 | 86930 | 102020 | 117270 |
Table 1 Areas of human settlements within 10 and 50 km of protected areas
Distance (km) | Area (km²) | ||
---|---|---|---|
1990 | 2000 | 2014 | |
≤ 10 | 21475 | 25655 | 30010 |
≤ 50 | 86930 | 102020 | 117270 |
Name | Representative characteristics |
---|---|
Af | Tropical, rainforest |
Am | Tropical, monsoon |
Aw | Tropical, savannah |
BWh | Arid, desert, hot |
BWk | Arid, desert, cold |
BSh | Arid, steppe, hot |
BSk | Arid, steppe, cold |
Csa | Temperate, dry summer, hot summer |
Csb | Temperate, dry summer, warm summer |
Csc | Temperate, dry summer, cold summer |
Cwa | Temperate, dry winter, hot summer |
Cwb | Temperate, dry winter, warm summer |
Cwc | Temperate, dry winter, cold summer |
Cfa | Temperate, no dry season, hot summer |
Cfb | Temperate, no dry season, warm summer |
Cfc | Temperate, no dry season, cold summer |
Dsa | Cold, dry summer, hot summer |
Dsb | Cold, dry summer, warm summer |
Dsc | Cold, dry summer, cold summer |
Dsd | Cold, dry summer, very cold winter |
Dwa | Cold, dry winter, hot summer |
Dwb | Cold, dry winter, warm summer |
Dwc | Cold, dry winter, cold summer |
Dwd | Cold, dry winter, very cold winter |
Dfa | Cold, no dry season, hot summer |
Dfb | Cold, no dry season, warm summer |
Dfc | Cold, no dry season, cold summer |
Dfd | Cold, no dry season, very cold winter |
ET | Polar, tundra |
EF | Polar, frost |
Table 2 Köppen-Geiger climate classification
Name | Representative characteristics |
---|---|
Af | Tropical, rainforest |
Am | Tropical, monsoon |
Aw | Tropical, savannah |
BWh | Arid, desert, hot |
BWk | Arid, desert, cold |
BSh | Arid, steppe, hot |
BSk | Arid, steppe, cold |
Csa | Temperate, dry summer, hot summer |
Csb | Temperate, dry summer, warm summer |
Csc | Temperate, dry summer, cold summer |
Cwa | Temperate, dry winter, hot summer |
Cwb | Temperate, dry winter, warm summer |
Cwc | Temperate, dry winter, cold summer |
Cfa | Temperate, no dry season, hot summer |
Cfb | Temperate, no dry season, warm summer |
Cfc | Temperate, no dry season, cold summer |
Dsa | Cold, dry summer, hot summer |
Dsb | Cold, dry summer, warm summer |
Dsc | Cold, dry summer, cold summer |
Dsd | Cold, dry summer, very cold winter |
Dwa | Cold, dry winter, hot summer |
Dwb | Cold, dry winter, warm summer |
Dwc | Cold, dry winter, cold summer |
Dwd | Cold, dry winter, very cold winter |
Dfa | Cold, no dry season, hot summer |
Dfb | Cold, no dry season, warm summer |
Dfc | Cold, no dry season, cold summer |
Dfd | Cold, no dry season, very cold winter |
ET | Polar, tundra |
EF | Polar, frost |
[1] | Abel N, Gorddard R, Harman B, et al. 2011. Sea level rise, coastal development and planned retreat: Analytical framework, governance principles and an Australian case study. Environmental Science & Policy, 14: 279-288. |
[2] |
Addo K A. 2013. Shoreline morphological changes and the human factor: Case study of Accra Ghana. Journal of Coastal Conservation, 17(1): 85-91.
DOI URL |
[3] |
Allen G H, Pavelsky T M. 2018. Global extent of rivers and streams. Science, 361(6402): 585-588.
DOI URL |
[4] |
Angel S, Parent J, Civco D L, et al. 2011. The dimensions of global urban expansion: Estimates and projections for all countries, 2000-2050. Progress in Planning, 75(2): 53-107.
DOI URL |
[5] |
Antonioli F de Falco G, Lo Presti V, et al. 2020. Relative sea-level rise and potential submersion risk for 2100 on 16 coastal plains of the Mediterranean Sea. Water, 12(8): 2173. DOI: 10.339/w12082173.
DOI URL |
[6] |
Baisero D, Visconti P, Pacifici M, et al. 2020. Projected global loss of mammal habitat due to land-use and climate change. One Earth, 2(6): 578-585.
DOI URL |
[7] |
Beck H E, Zimmermann N E, McVicar T R, et al. 2018. Present and future Koppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5: 180214. DOI: 10.1038/sdata.2018.214.
DOI URL |
[8] |
Cohen B. 2004. Urban growth in developing countries: A review of current trends and a caution regarding existing forecasts. World Development, 32: 23-51.
DOI URL |
[9] |
Egan P J, Mullin M. 2016. Recent improvement and projected worsening of weather in the United States. Nature, 532(7599): 357-360.
DOI URL |
[10] |
Esch T, Marconcini M, Felbier A, et al. 2013. Urban footprint processor—Fully automated processing chain generating settlement masks from global data of the TanDEM-X Mission. IEEE Geoscience and Remote Sensing Letters, 10(6): 1617-1621.
DOI URL |
[11] |
Esch T, Taubenböck H, Roth A, et al. 2012. TanDEM-X mission—New perspectives for the inventory and monitoring of global settlement patterns. Journal of Applied Remote Sensing, 6(1): 061702-1. DOI: 10.1117/1.Jrs.6.061702.
DOI |
[12] |
Fang Z H, Liu Z F, He C Y, et al. 2020. Will climate change make Chinese people more comfortable? A scenario analysis based on the weather preference index. Environmental Research Letters, 15(8): 084028. DOI: 10.1088/1748-9326/ab9965.
DOI URL |
[13] |
Gong P, Li X C, Zhang W. 2019. 40-Year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin, 64(11): 756-763.
DOI URL |
[14] |
Gray C, Mueller V. 2012. Drought and population mobility in rural Ethiopia. World Development, 40(1): 134-145.
DOI URL |
[15] |
Haddad N M, Brudvig L A, Clobert J, et al. 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2): e1500052. DOI: 10.1126/sciadv.1500052.
DOI URL |
[16] |
Haer T, Kalnay E, Kearney M, et al. 2013. Relative sea-level rise and the conterminous United States: Consequences of potential land inundation in terms of population at risk and GDP loss. Global Environmental Change, 23: 1627-1636.
DOI URL |
[17] |
Hauer M E, Evans J M, Mishra D R. 2016. Millions projected to be at risk from sea-level rise in the continental United States. Nature Climate Change, 6(7): 691-695.
DOI URL |
[18] |
Hauer M E, Hardy R D, Mishra D R, et al. 2019. No landward movement: Examining 80 years of population migration and shoreline change in Louisiana. Population and Environment, 40(4): 369-387.
DOI URL |
[19] |
Hijmans R J, Cameron S E, Parra J L, et al. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965-1978.
DOI URL |
[20] |
Hunter L M, Murray S, Riosmena F. 2013. Rainfall patterns and US migration from rural Mexico. International Migration Review, 47(4): 874-909.
PMID |
[21] |
Hutyra L R, Yoon B, Hepinstall-Cymerman J, et al. 2011. Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landscape and Urban Planning, 103(1): 83-93.
DOI URL |
[22] |
Ibisch P L, Hoffmann M T, Kreft S, et al. 2016. A global map of roadless areas and their conservation status. Science, 354(6318): 1423-1427.
DOI URL |
[23] | Lehner B, Döll P. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, 296(1-4): 1-22. |
[24] |
Leyk S, Runfola D, Nawrotzki R J, et al. 2017. Internal and international mobility as adaptation to climatic variability in contemporary Mexico: Evidence from the integration of census and satellite data. Population, Space and Place, 23(6): e2407. DOI: 10.1002/psp.2047.
DOI |
[25] |
McDonald R I, Kareiva P, Forman R T T. 2008. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biological Conservation, 141(6): 1695-1703.
DOI URL |
[26] |
Nawrotzki R J, Hunter L M, Runfola D M, et al. 2015. Climate change as migration driver from rural and urban Mexico. Environment Research Letters, 10(11): 114023. DOI: 10.1088/1748-9326/10/11/114023.
DOI URL |
[27] |
Nicholls R J, Leatherman S P. 1996. Adapting to sea-level rise: Relative sea-level trends to 2100 for the United States. Coastal Management, 24(4): 301-324.
DOI URL |
[28] | Pesaresi Martino, Ehrilch Daniele, Florczyk Aneta J, et al. 2015. GHS built-up grid, derived from Landsat, multitemporal (1975, 1990, 2000, 2014). European Commission, Joint Research Centre (JRC). |
[29] |
Seto K C, Fragkias M, Guneralp B, et al. 2011. A meta-analysis of global urban land expansion. Plos One, 6(8): e23777. DOI: 10.1371/journal.p one.0023777.
DOI URL |
[30] |
Seto K C, Guneralp B, Hutyra L R. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Science of USA, 109: 16083-16088.
DOI URL |
[31] | Small C, Nicholls R J. 2003. A global analysis of human settlement in coastal zones. Journal of Coastal Research, 19: 584-599. |
[32] |
Strauss B H, Ziemlinski R, Weiss J L, et al. 2012. Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States. Environment Research Letters, 7(1): 014033. DOI: 10.1088/1748-9326/7/1/014033.
DOI URL |
[33] | Wessel P, Smith W H F. 1996. A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101: 8741-8743. |
[34] |
Wittemyer G, Elsen P, Bean W T, et al. 2008. Accelerated human population growth at protected area edges. Science, 321(5885): 123-126.
DOI PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||