Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (6): 801-813.DOI: 10.5814/j.issn.1674-764x.2021.06.008
• Regional Geography and Ecological Changes • Previous Articles Next Articles
XU Chuangsheng1(), CHENG Long2, SU Jie2, YIN Haiwei2,*(
), GUO Yiqiang3
Received:
2020-11-03
Accepted:
2021-02-24
Online:
2021-11-30
Published:
2022-01-30
Contact:
YIN Haiwei
About author:
XU Chuangshen, E-mail: zrzyxuchuangsheng@163.com
Supported by:
XU Chuangsheng, CHENG Long, SU Jie, YIN Haiwei, GUO Yiqiang. Developing Regional Ecological Networks along the Grand Canal based on an Integrated Analysis Framework[J]. Journal of Resources and Ecology, 2021, 12(6): 801-813.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.06.008
Land use type | Area (km2) | Proportion of area (%) |
---|---|---|
Farmlands | 189454.14 | 61.42 |
Forests | 48827.56 | 15.83 |
Shrubs | 6000.32 | 1.95 |
Grasslands | 1501.59 | 0.49 |
Wetlands | 427.03 | 0.14 |
Water | 17492.50 | 5.67 |
Impervious surfaces | 44043.02 | 14.28 |
Bare land | 691.94 | 0.22 |
Total | 308438.10 | 100.00 |
Table 1 Land use type statistics
Land use type | Area (km2) | Proportion of area (%) |
---|---|---|
Farmlands | 189454.14 | 61.42 |
Forests | 48827.56 | 15.83 |
Shrubs | 6000.32 | 1.95 |
Grasslands | 1501.59 | 0.49 |
Wetlands | 427.03 | 0.14 |
Water | 17492.50 | 5.67 |
Impervious surfaces | 44043.02 | 14.28 |
Bare land | 691.94 | 0.22 |
Total | 308438.10 | 100.00 |
Fig. 1 Map of the study area (a) and land use and land cover (b) Note: City code:1. Beijing; 2. Tianjn; 3. Langfang; 4. Xiong’an New District; 5. Cangzhou; 6. Hengshui; 7. Dezhou; 8. Xingtai; 9. Handan; 10. Liaocheng; 11. Tai’an; 12. Anyang; 13. Puyang; 14. Hebi; 15. Jining; 16. Xinxiang; 17. Jiaozuo; 18. Zaozhuang; 19. Zhengzhou; 20. Kaifeng; 21. Luoyang; 22. Xuzhou; 23. Shangqiu; 24. Suzhou (Anhui); 25. Suqian; 26. Huaibei; 27. Huai’an; 28. Yangzhou; 29. Zhenjiang; 30. Changzhou; 31. Wuxi; 32. Suzhou (Jiangsu); 33. Huzhou; 34. Jiaxing; 35. Hangzhou; 36. Ningbo; 37. Shaoxing.
Fig. 2 SCSAI ecological network research framework Note: AFS = “Attribution-function-structure” index system; LCP = Least cost path method; MWS = Moving windows search method; NLD = Night-time light data; DEM = Digital elevation model.
Fig. 3 Spatial distributions of ecological sources (a) and landscape resistance (b) Major water source code:. Miyun Reservoir;. Yuqiao Miyun Reservoir;. Guangang Wetland Park;. Nandagang Wetland Park;. Dushan Lake;. Weihan Lake;. Luhun Reservoir;. Luoma Lake;. Baima Lake;. Baoying Lake;. Nvshan Lake;. Hongze Lake;. Qili Lake;. Gaoyou Lake;. Changdang Lake;. Ge Lake;. Yangchenghu Lake;. Yangchenghu West Lake;. Jilin Lake;. Chenghu Lake;. Taihu Lake;. Duihekou Reservoir;. Didang Lake;. The mouth of Jiaxing;. Qiandao Lake;. Qiantang River. Same below.
Land use types | Factor | Classification | Resistance value |
---|---|---|---|
Farmlands | - | - | 150 |
Forests | Area | <10 ha | 20 |
≥10 ha | 1 | ||
Grasslands | - | - | 50 |
Shrubs | - | - | 40 |
Wetlands | - | - | 1 |
Water | Area | <10 ha | 20 |
10-100 ha | 200 | ||
≥100 ha | 1000 | ||
Construction land | - | - | 600 |
Bare land | - | - | 500 |
Table 2 Habitat suitability and landscape resistance assignment scheme in the study area
Land use types | Factor | Classification | Resistance value |
---|---|---|---|
Farmlands | - | - | 150 |
Forests | Area | <10 ha | 20 |
≥10 ha | 1 | ||
Grasslands | - | - | 50 |
Shrubs | - | - | 40 |
Wetlands | - | - | 1 |
Water | Area | <10 ha | 20 |
10-100 ha | 200 | ||
≥100 ha | 1000 | ||
Construction land | - | - | 600 |
Bare land | - | - | 500 |
City | Number of ecological sources | City | Number of ecological sources |
---|---|---|---|
Ningbo | 19 | Luoyang | 3 |
Hangzhou | 15 | Xuzhou | 3 |
Shaoxing | 11 | Jining | 2 |
Suzhou (Jiangsu) | 11 | Jiaxing | 2 |
Huai’an | 10 | Suqian | 2 |
Huzhou | 8 | Zhenjiang | 2 |
Wuxi | 8 | Anyang | 1 |
Changzhou | 7 | Cangzhou | 1 |
Beijing | 6 | Hebi | 1 |
Tianjin | 4 | Xinxiang | 1 |
Yangzhou | 4 | Zaozhuang | 1 |
Table 3 The number of ecological sources in each city
City | Number of ecological sources | City | Number of ecological sources |
---|---|---|---|
Ningbo | 19 | Luoyang | 3 |
Hangzhou | 15 | Xuzhou | 3 |
Shaoxing | 11 | Jining | 2 |
Suzhou (Jiangsu) | 11 | Jiaxing | 2 |
Huai’an | 10 | Suqian | 2 |
Huzhou | 8 | Zhenjiang | 2 |
Wuxi | 8 | Anyang | 1 |
Changzhou | 7 | Cangzhou | 1 |
Beijing | 6 | Hebi | 1 |
Tianjin | 4 | Xinxiang | 1 |
Yangzhou | 4 | Zaozhuang | 1 |
City | Important | Very important | Extremely important | Subtotal | City | Important | Very important | Extremely important | Subtotal |
---|---|---|---|---|---|---|---|---|---|
Anyang | 2 | 1 | 0 | 3 | Ningbo | 3 | 1 | 11 | 15 |
Beijing | 3 | 4 | 0 | 7 | Puyang | 1 | 0 | 0 | 1 |
Cangzhou | 8 | 3 | 0 | 11 | Shangqiu | 2 | 0 | 0 | 2 |
Changzhou | 6 | 13 | 11 | 30 | Shaoxing | 0 | 6 | 3 | 9 |
Dezhou | 3 | 0 | 0 | 3 | Suzhou (Jiangsu) | 45 | 3 | 14 | 62 |
Handan | 1 | 1 | 0 | 2 | Tai’an | 6 | 0 | 0 | 6 |
Hangzhou | 5 | 8 | 8 | 21 | Tianjin | 4 | 3 | 0 | 7 |
Hebi | 1 | 0 | 0 | 1 | Wuxi | 9 | 3 | 13 | 25 |
Hengshui | 1 | 1 | 0 | 2 | Xinxiang | 0 | 1 | 0 | 1 |
Huzhou | 0 | 1 | 6 | 7 | Xingtai | 2 | 2 | 0 | 4 |
Huai’an | 4 | 6 | 4 | 14 | Xiong’an New District | 0 | 2 | 0 | 2 |
Huaibei | 1 | 0 | 0 | 1 | Suqian | 2 | 2 | 0 | 4 |
Jining | 7 | 2 | 0 | 9 | Suzhou (Anhui) | 5 | 3 | 0 | 8 |
Jiaxing | 2 | 1 | 2 | 5 | Xuzhou | 4 | 4 | 0 | 8 |
Jiaozuo | 0 | 1 | 0 | 1 | Yangzhou | 0 | 2 | 0 | 2 |
Kaifeng | 2 | 0 | 0 | 2 | Zaozhuang | 6 | 3 | 0 | 9 |
Langfang | 1 | 1 | 0 | 2 | Zhenjiang | 0 | 5 | 0 | 5 |
Liaocheng | 4 | 0 | 0 | 4 | Zhengzhou | 5 | 3 | 0 | 8 |
Luoyang | 2 | 1 | 2 | 5 | Total | 147 | 87 | 74 | 308 |
Table 4 Statistics on the importance levels of the urban ecological corridors by city
City | Important | Very important | Extremely important | Subtotal | City | Important | Very important | Extremely important | Subtotal |
---|---|---|---|---|---|---|---|---|---|
Anyang | 2 | 1 | 0 | 3 | Ningbo | 3 | 1 | 11 | 15 |
Beijing | 3 | 4 | 0 | 7 | Puyang | 1 | 0 | 0 | 1 |
Cangzhou | 8 | 3 | 0 | 11 | Shangqiu | 2 | 0 | 0 | 2 |
Changzhou | 6 | 13 | 11 | 30 | Shaoxing | 0 | 6 | 3 | 9 |
Dezhou | 3 | 0 | 0 | 3 | Suzhou (Jiangsu) | 45 | 3 | 14 | 62 |
Handan | 1 | 1 | 0 | 2 | Tai’an | 6 | 0 | 0 | 6 |
Hangzhou | 5 | 8 | 8 | 21 | Tianjin | 4 | 3 | 0 | 7 |
Hebi | 1 | 0 | 0 | 1 | Wuxi | 9 | 3 | 13 | 25 |
Hengshui | 1 | 1 | 0 | 2 | Xinxiang | 0 | 1 | 0 | 1 |
Huzhou | 0 | 1 | 6 | 7 | Xingtai | 2 | 2 | 0 | 4 |
Huai’an | 4 | 6 | 4 | 14 | Xiong’an New District | 0 | 2 | 0 | 2 |
Huaibei | 1 | 0 | 0 | 1 | Suqian | 2 | 2 | 0 | 4 |
Jining | 7 | 2 | 0 | 9 | Suzhou (Anhui) | 5 | 3 | 0 | 8 |
Jiaxing | 2 | 1 | 2 | 5 | Xuzhou | 4 | 4 | 0 | 8 |
Jiaozuo | 0 | 1 | 0 | 1 | Yangzhou | 0 | 2 | 0 | 2 |
Kaifeng | 2 | 0 | 0 | 2 | Zaozhuang | 6 | 3 | 0 | 9 |
Langfang | 1 | 1 | 0 | 2 | Zhenjiang | 0 | 5 | 0 | 5 |
Liaocheng | 4 | 0 | 0 | 4 | Zhengzhou | 5 | 3 | 0 | 8 |
Luoyang | 2 | 1 | 2 | 5 | Total | 147 | 87 | 74 | 308 |
[1] |
Ayram C A C, Mendoza M E, Salicrup D R P, et al. 2014. Identifying potential conservation areas in the Cuitzeo Lake basin, Mexico by multitemporal analysis of landscape connectivity. Journal for Nature Conservation, 22(5): 424-435.
DOI URL |
[2] | Bennett A F. 1990. Habitat corridors and the conservation of small mammals in a fragmented forest environment. Landscape Ecology, 4(2-3): 109-122. |
[3] | Braaker S, Moretti M, Boesch R, et al. 2014. Assessing habitat connectivity for ground-dwelling animals in an urban environment. Ecological Applications, 24(7): 1583-1595. |
[4] |
Carroll C, McRae B H, Brookes A. 2012. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conservation Biology, 26(1): 78-87.
DOI PMID |
[5] | Chetkiewicz C L B, St Clair C C, Boyce M S. 2006. Corridors for conservation: Integrating pattern and process. Annual Review of Ecology, Evolution, and Systematics, 37(1): 317-342. |
[6] | Correa Ayram C A, Mendoza M E, Etter A, et al. 2016. Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography: Earth and Environment, 40(1): 7-37. |
[7] |
Damschen E I, Haddad N M, Orrock J L, et al. 2006. Corridors increase plant species richness at large scales. Science, 313(5791): 1284-1286.
PMID |
[8] | Dan L, Qing C. 2015. Ecological security research progress in China. Acta Ecologica Sinica, 35(5): 111-121. |
[9] | Dennis P, Fahrig L, Hobbs R, et al. 2004. Ecological networks and greenways:Concept, design, implementation. Cambridge, UK: Cambridge University Press. |
[10] | Fei F, Yin H W, Kong F H, et al. 2020. Comparative analysis of ecological network pattern using 2d and 3d information in main urban area of nanjing, China. Acta Ecologica Sinica, 40(16): 5534-5545. (in Chinese) |
[11] | Foltête J C, Clauzel C, Vuidel G. 2012. A software tool dedicated to the modelling of landscape networks. Environmental Modelling & Software, 38: 316-327. |
[12] |
Fox A D, Corne D W, Adame C G M, et al. 2019. An efficient multi-objective optimization method for use in the design of marine protected area networks. Frontiers in Marine Science, 6: 17. DOI: 10.3389/fmars.2019.00017.
DOI URL |
[13] | Klar N, Herrmann M, Henning-Hahn M, et al. 2012. Between ecological theory and planning practice: (Re-) Connecting forest patches for the wildcat in Lower Saxony, Germany. Landscape and Urban Planning, 105(4): 376-384. |
[14] | Koen E L, Bowman J, Walpole A A. 2012. The effect of cost surface parameterization on landscape resistance estimates. Molecular Ecology Resources, 12(4): 686-696. |
[15] |
Kong F H, Yin H W, Nakagoshi N, et al. 2010. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landscape and Urban Planning, 95(1-2): 16-27.
DOI URL |
[16] | Kong F H, Yin H W. 2008. Developing green space ecological networks in Jinan City. Acta Ecologica Sinica, 28(4): 1711-1719. (in Chinese) |
[17] | Liu J, Yin H W, Kong F H, et al. 2018. Structure optimization of circuit theory-based green infrastructure in Nanjing, China. Acta Ecologica Sinica, 38(12): 4363-4372. (in Chinese) |
[18] | Matthews M J, O’Connor S, Cole R S. 1988. Database for the New York State urban wildlife habitat inventory. Landscape and Urban Planning, 15(1-2): 23-37. |
[19] |
McRae B H. 2006. Isolation by resistance. Evolution, 60(8): 1551-1561.
PMID |
[20] | McRae B H, Beier P. 2007. Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences of the USA, 104(50): 19885-19890. |
[21] |
McRae B H, Dickson B G, Keitt T H, et al. 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10): 2712-2724.
PMID |
[22] |
McRae B H, Hall S A, Beier P, et al. 2012. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. Plos One, 7(12): e52604. DOI: 10.1371/journal.pone.0052604.
DOI URL |
[23] | McRae B H, Kavanagh D M. 2011. Linkage mapper connectivity analysis software. Seattle, Washington, USA: The Nature Conservancy. Available at: http://www.circuitscape.org/linkagemapper. |
[24] | Peng J, Zhao H J, Liu Y X, et al. 2017. Research progress and prospect on regional ecological security pattern construction. Geographical Research, 36(3): 407-419. (in Chinese) |
[25] | Pullinger M G, Johnson C J. 2010. Maintaining or restoring connectivity of modified landscapes: Evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecology, 25(10): 1547-1560. |
[26] |
Shan N, Zhou K X, Pan Y, et al. 2019. Research advances in design methods of biodiversity conservation corridors. Acta Ecologica Sinica, 39(2): 411-420. (in Chinese)
DOI URL |
[27] |
Song L L, Qin M Z. 2016. Identification of ecological corridors and its importance by integrating circuit theory. Chinese Journal of Applied Ecology, 27(10): 3344-3352. (in Chinese)
DOI PMID |
[28] | Sutton-Grier A E, Wowk K, Bamford H. 2015. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science & Policy, 51: 137-148. |
[29] | Urban D, Keitt T. 2001. Landscape connectivity: A graph-theoretic perspective. Ecology, 82(5): 1205-1218. |
[30] | Vallecillo S, Polce C, Barbosa A, et al. 2018. Spatial alternatives for Green Infrastructure planning across the EU: An ecosystem service perspective. Landscape and Urban Planning, 174: 41-54. |
[31] |
Vogt P, Ferrari J R, Lookingbill T R, et al. 2009. Mapping functional connectivity. Ecological Indicators, 9(1): 64-71.
DOI URL |
[32] | Wei J X, Song Y, Wang Y C, et al. 2019. Urban green infrastructure building for sustainability in areas of rapid urbanization based on evaluating spatial priority: A case study of Pukou in China. Acta Ecologica Sinica, 39(4): 1178-1188. (in Chinese) |
[33] | Xie G D, Zhang C X, Zhang L M, et al. 2015. Improvement of the evaluation method for ecosystem service value based on per unit area. Journal of Natural Resources, 30(8): 1243-1254. (in Chinese) |
[34] | Xu F, Yin H W, Kong F H, et al. 2015. Developing ecological networks based on MSPA and the least-cost path method: A case study in Bazhong western new district. Acta Ecologica Sinica, 35(19): 6425-6434. (in Chinese) |
[35] | Yang J, Zhang J C, Wu Y X, et al. 2014. Evolution of ecological environment in typical regions along the Beijing-Hangzhou Grand Canal. Beijing, China: Publishing House of Electronics Industry. (in Chinese) |
[36] | Yin H W, Kong F H, Qi Y, et al. 2011. Developing and optimizing ecological networks in urban agglomeration of Hunan Province, China. Acta Ecologica Sinica, 31(10): 2863-2874. (in Chinese) |
[37] | Yu K J, Li D H, Li W. 2004. The Great Canal regional ecological infrastructure: Strategy and approaches. Progress in Geography, 23(1): 1-12. (in Chinese) |
[38] | Yu K J. 1996. Security patterns and surface model in landscape ecological planning. Landscape and Urban Planning, 36(1): 1-17. |
[39] |
Zhu J, Su J, Yin H W, et al. 2020. Construction of Xuzhou ecological network based on comprehensive sources identification and multi- scale nesting. Journal of Natural Resources, 35(8): 1986-2001. (in Chinese)
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||