Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (5): 636-649.DOI: 10.5814/j.issn.1674-764x.2021.05.007
• Resource Economy • Previous Articles Next Articles
CHENG Peng(), MIN Min*(
), ZHAO Wei, ZHAO Ke
Received:
2021-01-19
Accepted:
2021-04-20
Online:
2021-09-30
Published:
2021-11-30
Contact:
MIN Min
About author:
CHENG Peng, E-mail: 1962544628@qq.com
Supported by:
CHENG Peng, MIN Min, ZHAO Wei, ZHAO Ke. Spatial Differentiation Pattern of Habitat Quality and Mechanism of Factors Influencing in Resource-based Cities: A Case Study of Tangshan City, China[J]. Journal of Resources and Ecology, 2021, 12(5): 636-649.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.05.007
Fig. 3 (a) Spatial distribution of total habitat quality in each township in Tangshan City; (b) Spatial distribution of average habitat quality in each township in Tangshan City.
Fig. 5 (a) Analysis of kernel density of Tangshan’s raw material industry layout; (b) Analysis of kernel density of Tangshan’s extractive industry layout; (c) Analysis of kernel density of Tangshan’s construction industry layout.
Raw material industrial habitat quality level | Ⅰ (0-0.057) | Ⅱ (0.057-0.170) | Ⅲ (0.170-0.402) | Ⅳ (0.402-0.747) | Ⅴ (0.747-1.205) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Lower | 1390.73 | 13.22 | 900.96 | 34.58 | 427.10 | 57.46 | 126.50 | 85.72 | 72.96 | 75.73 |
Low | 1965.27 | 18.69 | 602.80 | 23.14 | 201.38 | 27.09 | 21.07 | 14.28 | 23.39 | 24.27 |
Medium | 1981.13 | 18.84 | 720.93 | 27.67 | 100.73 | 13.55 | 0 | 0 | 0 | 0 |
High | 2569.29 | 24.43 | 217.90 | 8.36 | 14.12 | 1.90 | 0 | 0 | 0 | 0 |
Higher | 2611.45 | 24.83 | 162.86 | 6.25 | 0 | 0 | 0 | 0 | 0 | 0 |
Total area | 10517.87 | 74.54 | 2605.45 | 18.46 | 743.34 | 5.27 | 147.57 | 1.05 | 96.35 | 0.68 |
Average (pixel) | 2648.24 | 1082.31 | 410.39 | 200.81 | 243.16 |
Table 1 Habitat quality grade distribution of different raw material industrial kernel density levels in Tangshan City
Raw material industrial habitat quality level | Ⅰ (0-0.057) | Ⅱ (0.057-0.170) | Ⅲ (0.170-0.402) | Ⅳ (0.402-0.747) | Ⅴ (0.747-1.205) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Lower | 1390.73 | 13.22 | 900.96 | 34.58 | 427.10 | 57.46 | 126.50 | 85.72 | 72.96 | 75.73 |
Low | 1965.27 | 18.69 | 602.80 | 23.14 | 201.38 | 27.09 | 21.07 | 14.28 | 23.39 | 24.27 |
Medium | 1981.13 | 18.84 | 720.93 | 27.67 | 100.73 | 13.55 | 0 | 0 | 0 | 0 |
High | 2569.29 | 24.43 | 217.90 | 8.36 | 14.12 | 1.90 | 0 | 0 | 0 | 0 |
Higher | 2611.45 | 24.83 | 162.86 | 6.25 | 0 | 0 | 0 | 0 | 0 | 0 |
Total area | 10517.87 | 74.54 | 2605.45 | 18.46 | 743.34 | 5.27 | 147.57 | 1.05 | 96.35 | 0.68 |
Average (pixel) | 2648.24 | 1082.31 | 410.39 | 200.81 | 243.16 |
Extractive industrial habitat quality level | Ⅰ(0-0.006) | Ⅱ(0.006-0.015) | Ⅲ (0.015-0.029) | Ⅳ (0.029-0.051) | Ⅴ (0.051-0.088) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Lower | 1163.89 | 14.93 | 874.95 | 24.89 | 510.37 | 30.52 | 304.39 | 36.14 | 64.65 | 22.86 |
Low | 1240.45 | 15.91 | 728.72 | 20.73 | 488.64 | 29.22 | 269.35 | 31.98 | 86.75 | 30.67 |
Medium | 1763.92 | 22.62 | 727.22 | 20.68 | 255.43 | 15.27 | 30.39 | 3.61 | 25.82 | 9.13 |
High | 2251.62 | 28.88 | 284.45 | 8.10 | 82.63 | 4.90 | 80.51 | 9.56 | 102.10 | 36.10 |
Higher | 1377.44 | 17.67 | 900.51 | 25.61 | 335.31 | 20.05 | 157.54 | 18.71 | 3.51 | 1.24 |
Total area | 7797.33 | 55.26 | 3515.85 | 24.92 | 1672.39 | 11.85 | 842.19 | 5.97 | 282.82 | 2.00 |
Average (pixel) | 2343.80 | 2266.33 | 1904.45 | 1522.98 | 1132.91 |
Table 2 Habitat quality grade distribution of different extractive industrial kernel density levels in Tangshan City
Extractive industrial habitat quality level | Ⅰ(0-0.006) | Ⅱ(0.006-0.015) | Ⅲ (0.015-0.029) | Ⅳ (0.029-0.051) | Ⅴ (0.051-0.088) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Lower | 1163.89 | 14.93 | 874.95 | 24.89 | 510.37 | 30.52 | 304.39 | 36.14 | 64.65 | 22.86 |
Low | 1240.45 | 15.91 | 728.72 | 20.73 | 488.64 | 29.22 | 269.35 | 31.98 | 86.75 | 30.67 |
Medium | 1763.92 | 22.62 | 727.22 | 20.68 | 255.43 | 15.27 | 30.39 | 3.61 | 25.82 | 9.13 |
High | 2251.62 | 28.88 | 284.45 | 8.10 | 82.63 | 4.90 | 80.51 | 9.56 | 102.10 | 36.10 |
Higher | 1377.44 | 17.67 | 900.51 | 25.61 | 335.31 | 20.05 | 157.54 | 18.71 | 3.51 | 1.24 |
Total area | 7797.33 | 55.26 | 3515.85 | 24.92 | 1672.39 | 11.85 | 842.19 | 5.97 | 282.82 | 2.00 |
Average (pixel) | 2343.80 | 2266.33 | 1904.45 | 1522.98 | 1132.91 |
Construction industrial habitat quality level | Ⅰ (0-0.098) | Ⅱ (0.098-0.322) | Ⅲ (0.322-0.743) | Ⅳ (0.743-1.415) | Ⅴ (1.415-2.283) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Lower | 2092.35 | 17.84 | 444.94 | 30.51 | 212.52 | 30.23 | 91.59 | 65.87 | 76.85 | 93.96 |
Low | 2250.63 | 19.19 | 326.83 | 22.41 | 184.05 | 26.18 | 47.46 | 34.13 | 4.94 | 6.04 |
Medium | 2284.39 | 19.48 | 392.21 | 26.89 | 126.20 | 17.95 | 0 | 0 | 0 | 0 |
High | 2552.11 | 21.76 | 181.91 | 12.47 | 67.30 | 9.57 | 0 | 0 | 0 | 0 |
Higher | 2548.99 | 21.73 | 112.44 | 7.71 | 112.87 | 16.06 | 0 | 0 | 0 | 0 |
Total area | 11728.47 | 83.12 | 1458.33 | 10.33 | 702.94 | 4.98 | 139.06 | 0.99 | 81.79 | 0.58 |
Average (pixel) | 2397.44 | 1321.68 | 1333.54 | 239.38 | 184.80 |
Table 3 Habitat quality grade distribution of different construction industrial kernel density levels in Tangshan City
Construction industrial habitat quality level | Ⅰ (0-0.098) | Ⅱ (0.098-0.322) | Ⅲ (0.322-0.743) | Ⅳ (0.743-1.415) | Ⅴ (1.415-2.283) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Lower | 2092.35 | 17.84 | 444.94 | 30.51 | 212.52 | 30.23 | 91.59 | 65.87 | 76.85 | 93.96 |
Low | 2250.63 | 19.19 | 326.83 | 22.41 | 184.05 | 26.18 | 47.46 | 34.13 | 4.94 | 6.04 |
Medium | 2284.39 | 19.48 | 392.21 | 26.89 | 126.20 | 17.95 | 0 | 0 | 0 | 0 |
High | 2552.11 | 21.76 | 181.91 | 12.47 | 67.30 | 9.57 | 0 | 0 | 0 | 0 |
Higher | 2548.99 | 21.73 | 112.44 | 7.71 | 112.87 | 16.06 | 0 | 0 | 0 | 0 |
Total area | 11728.47 | 83.12 | 1458.33 | 10.33 | 702.94 | 4.98 | 139.06 | 0.99 | 81.79 | 0.58 |
Average (pixel) | 2397.44 | 1321.68 | 1333.54 | 239.38 | 184.80 |
First level indicator | Secondary indicators | Code | Factor interpretation | |
---|---|---|---|---|
q-statistic | P value | |||
Natural environmental conditions | Average slope | X1 | 0.55 | 0.000 |
Mean elevation | X2 | 0.63 | 0.000 | |
Average annual precipitation | X3 | 0.34 | 0.000 | |
Urbanization factors | Population density | X4 | 0.46 | 0.000 |
Traffic network density | X5 | 0.17 | 0.000 | |
GDP per unit area | X6 | 0.22 | 0.000 | |
Industrialization factors | Raw material industrial density | X7 | 0.40 | 0.000 |
Construction industry density | X8 | 0.32 | 0.000 | |
Extractive industry density | X9 | 0.16 | 0.014 |
Table 4 Detection results of the factors affecting habitat quality in Tangshan City
First level indicator | Secondary indicators | Code | Factor interpretation | |
---|---|---|---|---|
q-statistic | P value | |||
Natural environmental conditions | Average slope | X1 | 0.55 | 0.000 |
Mean elevation | X2 | 0.63 | 0.000 | |
Average annual precipitation | X3 | 0.34 | 0.000 | |
Urbanization factors | Population density | X4 | 0.46 | 0.000 |
Traffic network density | X5 | 0.17 | 0.000 | |
GDP per unit area | X6 | 0.22 | 0.000 | |
Industrialization factors | Raw material industrial density | X7 | 0.40 | 0.000 |
Construction industry density | X8 | 0.32 | 0.000 | |
Extractive industry density | X9 | 0.16 | 0.014 |
Impact factor | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
X1 | 0.55 | ||||||||
X2 | 0.68* | 0.63 | |||||||
X3 | 0.82* | 0.83* | 0.34 | ||||||
X4 | 0.73* | 0.75* | 0.78* | 0.46 | |||||
X5 | 0.73* | 0.78* | 0.60# | 0.67# | 0.17 | ||||
X6 | 0.72* | 0.73* | 0.68# | 0.65* | 0.48# | 0.22 | |||
X7 | 0.73* | 0.77* | 0.68* | 0.65* | 0.63# | 0.60* | 0.40 | ||
X8 | 0.73* | 0.78* | 0.64* | 0.66* | 0.54# | 0.57# | 0.57* | 0.32 | |
X9 | 0.64* | 0.71* | 0.54# | 0.59* | 0.41# | 0.45# | 0.59# | 0.50# | 0.16 |
Table 5 Interactive detection results of factors influencing habitat quality in Tangshan City
Impact factor | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
X1 | 0.55 | ||||||||
X2 | 0.68* | 0.63 | |||||||
X3 | 0.82* | 0.83* | 0.34 | ||||||
X4 | 0.73* | 0.75* | 0.78* | 0.46 | |||||
X5 | 0.73* | 0.78* | 0.60# | 0.67# | 0.17 | ||||
X6 | 0.72* | 0.73* | 0.68# | 0.65* | 0.48# | 0.22 | |||
X7 | 0.73* | 0.77* | 0.68* | 0.65* | 0.63# | 0.60* | 0.40 | ||
X8 | 0.73* | 0.78* | 0.64* | 0.66* | 0.54# | 0.57# | 0.57* | 0.32 | |
X9 | 0.64* | 0.71* | 0.54# | 0.59* | 0.41# | 0.45# | 0.59# | 0.50# | 0.16 |
[1] | Arkema K, Bernhardt J, Bierbower W. 2019. InVEST user guide.http://releases.naturalcapitalproject.org/invest-userguide/latest/# . |
[2] | Bai L M, Feng X H, Sun R F, et al. 2020. Spatial and temporal responses of habitat quality to urbanization: A case study of Changchun City, Jilin Province, China. Journal of Applied Ecology, 31(4): 1267‒1277. (in Chinese) |
[3] | Bai L M, Xiu C L, Feng X H, et al. 2019a. Influence of urbanization on regional habitat quality: A case study of Changchun City. Habitat International, 93:102042. DOI: 10.1016/j.habitatint.2019.102042. |
[4] | Bai L, Jiang L, Yang D Y, et al. 2019b. Quantifying the spatial heterogeneity influences of natural and socioeconomic factors and their interactions on air pollution using the geographical detector method: A case study of the Yangtze River Economic Belt, China. Journal of Cleaner Production, 232: 692‒704. |
[5] | Chang J, Zhang H, Ji M, et al. 2009. Case study on the redevelopment of industrial wasteland in resource-exhausted mining area. Procedia Earth and Planetary Science, 1(1): 1140‒1146. |
[6] | Costanza R, dArge R, deGroot R, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature, 387(6630):253-260. |
[7] | Dai L M, Li S L, Lewis B J, et al. 2019. The influence of land use change on the spatial-temporal variability of habitat quality between 1990 and 2010 in Northeast China. Journal of Forestry Research, 30(6): 2227-2236. |
[8] | Falcucci A, Maiorano L, Boitani L. 2007. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22(4): 617-631 |
[9] | Foley J A, Defries R, Asner G P, et al. 2005. Global consequences of land use. Science, 309(5734): 570-574. |
[10] | Forman R T T. 2000. Estimate of the area affected ecologically by the road system in the United States. Conservation Biology, 14(1): 31-35. |
[11] | Getis A, Ord J K 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3): 189-206 |
[12] | Han Y W, Kang W M, Thorne J, et al. 2019. Modeling the effects of landscape patterns of current forests on the habitat quality of historical remnants in a highly urbanized area. Urban Forestry & Urban Greening, 41:354-363. |
[13] | He J H, Huang J L, Li C. 2017a. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecological Modelling, 366:58-67. |
[14] | He S Y, Lee J, Zhou T, et al. 2017 b. Shrinking cities and resource-based economy: The economic restructuring in China’s mining cities. Cities, 60:75-83. |
[15] | He Y F, Xie H L. 2019. Exploring the spatiotemporal changes of ecological carrying capacity for regional sustainable development based on GIS: A case study of Nanchang City. Technological Forecasting and Social Change, 148:119720. DOI: 10.1016/j.techfore.2019.119720. |
[16] | Hooper D U, Chapin F S, Ewel J J, et al. 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75(1): 3‒35. |
[17] | Johnson M D. 2007. Measuring habitat quality: A review. The Condor, 109(3): 489-504 |
[18] | Jorgensen J C, Honea J M, McClure M M, et al. 2009. Linking landscape-level change to habitat quality: An evaluation of restoration actions on the freshwater habitat of spring-run Chinook salmon. Freshwater Biology, 54(7): 1560-1575. |
[19] | Kempton R A. 1979. The structure of species abundance and measurement of diversity. Biometrics, 351: 307-321 |
[20] | Lefebvre H. 1991. The production of space. Oxford, UK: Blackwell, 1-40. |
[21] | Li H J, Long R Y, Chen H. 2013. Economic transition policies in Chinese resource-based cities: An overview of government efforts. Energy Policy, 55: 251‒260. |
[22] | Liu B, Wang J M, Jing Z R, et al. 2020. Measurement of sustainable transformation capability of resource-based cities based on fuzzy membership function: A case study of Shanxi Province, China. Resources Policy, 68:101739. DOI: 10.1016/j.resourpol.2020.101739. |
[23] | Liu C F, Wang C, Liu L. 2018. Spatio-temporal variation on habitat quality and its mechanism within the transitional area of the Three Natural Zones: A case study in Yuzhong County. Geographical Research, 37(2): 419-432. (in Chinese) |
[24] | Liu X, Andris C, Rahimi S. 2019. Place niche and its regional variability: Measuring spatial context patterns for points of interest with representation learning. Computers, Environment and Urban Systems, 75: 146‒160. |
[25] | Liu Y G. 2009. The functional classification and the characteristics of functional transition of Chinese resource-based cities. Geographical Research, 28(1): 153-160. (in Chinese) |
[26] | Liu Y L, Chen Y Y, Wu Z H, et al. 2021a. Geographical detector-based stratified regression kriging strategy for mapping soil organic carbon with high spatial heterogeneity. CATENA, 196:104953. DOI: 10.1016/j.cate na.2020.104953. |
[27] | Liu Z H, Huang Q D, Yang H Y. 2021b. Supply-demand spatial patterns of park cultural services in megalopolis area of Shenzhen, China. Ecological Indicators, 121:107066. DOI: 10.1016/j.ecolind.2020.107066. |
[28] | Min M, Lin C, Duan X J, et al. 2019. Spatial distribution and driving force analysis of urban heat island effect based on raster data: A case study of the Nanjing Metropolitan Area, China. Sustainable Cities and Society, 50:101637. DOI: 10.1016/j.scs.2019.101637. |
[29] | Moreira M, Fonseca C, Vergílio M, et al. 2018. Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: A case study of Pico Island (Azores, Portugal). Land Use Policy, 78:637-649. |
[30] | People’s Government of Tangshan City. 2011. Tangshan City Land Use Master Plan(2006-2020). http://ts.hebgt.gov.cn/ts/xxgk/ghtj/gtgh/101 460187729959.html . |
[31] | Romero-Calcerrada R, Luque S. 2006. Habitat quality assessment using Weights-of-Evidence based GIS modelling: The case of Picoides tridactylus as species indicator of the biodiversity value of the Finnish forest. Ecological Modelling, 196(1-2):62-76. |
[32] | Ruan F L, Yan L, Wang D. 2020. The complexity for the resource-based cities in China on creating sustainable development. Cities, 97:102571. DOI: 10.1016/j.cities.2019.102571. |
[33] | Sallustio L, De Toni A, Strollo A, et al. 2017. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. Journal of Environmental Management, 201: 129‒137. |
[34] | Sun X Y, Jiang Z, Liu F, et al. 2019. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, Eastern China, from 1980 to 2015. Ecological Indicators, 102:716-723. |
[35] | Tang Q, Wang J M, Jing Z R. 2021. Tempo-spatial changes of ecological vulnerability in resource-based urban based on genetic projection pursuit model. Ecological Indicators, 121:107059. DOI: 10.1016/j.ecolind.2020.107059. |
[36] | Terrado M, Sabater S, Chaplin-Kramer B, et al. 2016. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Science of the Total Environment, 540: 63‒70. |
[37] | Vanhorne B. 1983. Density as a misleading indicator of habitat quality. Journal of Wildlife Management, 474: 893-901 |
[38] | Wan L, Ye X, Lee J, et al. 2015. Effects of urbanization on ecosystem service values in a mineral resource-based city. Habitat International,46: 54-63. |
[39] | Wang J F, Xu C. 2017. Geodetector: Principle and prospective. Acta Geographica Sinica, 72(1): 116-134. (in Chinese) |
[40] | Wang Y, Li X, Zhang F, et al. 2020. Effects of rapid urbanization on ecological functional vulnerability of the land system in Wuhan, China: A flow and stock perspective. Journal of Cleaner Production, 248:119284. DOI: 10.1016/j.jclepro.2019.119284. |
[41] | Wu J S, Cao Q W, Shi S Q, et al. 2015. Spatio-temporal variability of habitat quality in Beijing-Tianjin-Hebei Area based on land use change. Chinese Journal of Applied Ecology, 26(11): 3457‒3466. (in Chinese) |
[42] | Wu J, Bai Z K, Zhao X J. 2020a. Research on the urbanization process of resource-based cities and the ecological risks of land use. China Mining Magazine, 29(8): 60-68. (in Chinese) |
[43] | Wu J, Mao J, Lin Q, et al. 2017. Urban growth boundary based on the evaluation of habitat quality: Taking the Yangtze River Delta as an example. Scientia Geographica Sinica, 37(1): 28-36. (in Chinese) |
[44] | Wu X, Zhang J J, Geng X L, et al. 2020b. Increasing green infrastructure-based ecological resilience in urban systems: A perspective from locating ecological and disturbance sources in a resource-based city. Sustainable Cities and Society, 61:102354. DOI: 10.1016/j.scs.2020.102354. |
[45] | Wu Y X, Deng N. 2019. Resource-based city ecological security early warning based on RBF Neural Network Model—Taking Yulin City as an example. Ecological Economy, 35(5): 111-118. (in Chinese) |
[46] | Xie G D, Zhen L, Lu C X, et al. 2008. Expert knowledge based valuation method of ecosystem services in China. Journal of Natural Resources, 23(5): 911-919. (in Chinese) |
[47] | Yan D, Kong Y, Ye B, et al. 2019. Spatial variation of energy efficiency based on a Super-Slack-Based Measure: Evidence from 104 resource- based cities. Journal of Cleaner Production, 240:117669. DOI: 10.101 6/j.jclepro.2019.117669. |
[48] | Yi P T, Li W W, Zhang D N. 2021. Sustainability assessment and key factors identification of first-tier cities in China. Journal of Cleaner Production, 281. DOI: 10.1016/j.jclepro.2020.125369. |
[49] | Zeng L J, Wang J F, Zhang J S, et al. 2020. New urbanization paths in mineral resource abundant regions in China: A three-dimensional cube framework. Resources Policy, 68:101709. DOI: 10.1016/j.resourpol.2020.101709. |
[50] | Zhai T L, Wang J, Fang Y, et al. 2020. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Science of the Total Environment, 708:135153. DOI: 10.1016/j.scitotenv.2019.135153. |
[51] | Zhang H, Zhang C, Hu T, et al. 2020a. Exploration of roadway factors and habitat quality using InVEST. Transportation Research Part D: Transport and Environment, 87:102551. DOI: 10.1016/j.trd.2020.102551. |
[52] | Zhang X R, Song W, Lang Y Q, et al. 2020b. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy, 99:104957. DOI: 10.1016/j.landusepol.2020.104957. |
[53] | Zhu C M, Zhang X L, Zhou M M, et al. 2020. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecological Indicators, 117:106654. DOI: 10.1016/j.ecolind.2020.106654. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||