Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (5): 609-619.DOI: 10.5814/j.issn.1674-764x.2021.05.004
• Human Activities and Ecological Security • Previous Articles Next Articles
LIU Qinqin1,2(), TIAN Yichen2, YIN Kai2, ZHANG Feifei2, YUAN Chao2, YANG Guang2,*(
)
Received:
2021-01-08
Accepted:
2021-04-02
Online:
2021-09-30
Published:
2021-11-30
Contact:
YANG Guang
About author:
LIU Qinqin, E-mail: liuqinqin18@163.com
Supported by:
LIU Qinqin, TIAN Yichen, YIN Kai, ZHANG Feifei, YUAN Chao, YANG Guang. Spatio-temporal Pattern of Surface Albedo in Beijing and Its Driving Factors based on Geographical Detectors[J]. Journal of Resources and Ecology, 2021, 12(5): 609-619.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.05.004
Fig. 2 Explanatory factor classification maps for (a) land use and land cover (LULC); (b) NDVI; (c) elevation; (d) slope; (e) annual mean temperature; and (f) annual cumulative precipitation.
Factors | NDVI | Elevation | Slope | Temperature | Precipitation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Values | Types | Values (m) | Types | Values (°) | Types | Values (℃) | Types | Values (mm) | Types | |
1 | 0.08-0.30 | N1 | ‒129‒158 | E1 | <2 | I | 2.5‒7.5 | T1 | 534‒565 | C1 |
2 | 0.30-0.37 | N2 | 158‒389 | E2 | 2‒6 | II | 7.5‒9.5 | T2 | 565‒575 | C2 |
3 | 0.37-0.44 | N3 | 389‒617 | E3 | 6‒15 | III | 9.5‒10.5 | T3 | 575‒585 | C3 |
4 | 0.44-0.50 | N4 | 617‒854 | E4 | 15‒25 | IV | 10.5‒12.0 | T4 | 585‒595 | C4 |
5 | 0.50-0.56 | N5 | 854‒1187 | E5 | >25 | V | 12.0‒13.5 | T5 | 595‒630 | C5 |
6 | 0.56-0.74 | N6 | 1187‒2270 | E6 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ |
Table 1 Discretization results of explanatory factors
Factors | NDVI | Elevation | Slope | Temperature | Precipitation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Values | Types | Values (m) | Types | Values (°) | Types | Values (℃) | Types | Values (mm) | Types | |
1 | 0.08-0.30 | N1 | ‒129‒158 | E1 | <2 | I | 2.5‒7.5 | T1 | 534‒565 | C1 |
2 | 0.30-0.37 | N2 | 158‒389 | E2 | 2‒6 | II | 7.5‒9.5 | T2 | 565‒575 | C2 |
3 | 0.37-0.44 | N3 | 389‒617 | E3 | 6‒15 | III | 9.5‒10.5 | T3 | 575‒585 | C3 |
4 | 0.44-0.50 | N4 | 617‒854 | E4 | 15‒25 | IV | 10.5‒12.0 | T4 | 585‒595 | C4 |
5 | 0.50-0.56 | N5 | 854‒1187 | E5 | >25 | V | 12.0‒13.5 | T5 | 595‒630 | C5 |
6 | 0.56-0.74 | N6 | 1187‒2270 | E6 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ |
Description | Interaction | |
---|---|---|
1 | $q(A\cap B)\text{}\ \text{min}\ \text{(}q(A),\ q(B)\text{)}$ | Weaken, nonlinear |
2 | $min\ (q(A),\ q(B))< q(A\cap B)< \max \ (q(A),\ q(B))$ | Weaken, univariate |
3 | $q(A\cap B)>\max \text{(}q(A),q(B)\text{)}$ | Enhance, bivariate |
4 | $q\left( A\cap B \right)=q\left( A \right)+q\left( B \right)$ | Independent |
5 | $q\left( A\cap B \right)>q\left( A \right)+q\left( B \right)$ | Enhance, nonlinear |
Table 2 Types of interactions between two covariates
Description | Interaction | |
---|---|---|
1 | $q(A\cap B)\text{}\ \text{min}\ \text{(}q(A),\ q(B)\text{)}$ | Weaken, nonlinear |
2 | $min\ (q(A),\ q(B))< q(A\cap B)< \max \ (q(A),\ q(B))$ | Weaken, univariate |
3 | $q(A\cap B)>\max \text{(}q(A),q(B)\text{)}$ | Enhance, bivariate |
4 | $q\left( A\cap B \right)=q\left( A \right)+q\left( B \right)$ | Independent |
5 | $q\left( A\cap B \right)>q\left( A \right)+q\left( B \right)$ | Enhance, nonlinear |
Seasons | Spring (day 30-120) | Summer (day 120-210) | Autumn (day 210-300) | Winter (day 300-30 of next year) |
---|---|---|---|---|
Mean | 0.127 | 0.134 | 0.122 | 0.142 |
Standard deviation | 0.001 | 0.002 | 0.006 | 0.030 |
Table 3 Seasonal averages of surface albedo in Beijing, 2015.
Seasons | Spring (day 30-120) | Summer (day 120-210) | Autumn (day 210-300) | Winter (day 300-30 of next year) |
---|---|---|---|---|
Mean | 0.127 | 0.134 | 0.122 | 0.142 |
Standard deviation | 0.001 | 0.002 | 0.006 | 0.030 |
Variables | LULC | NDVI | Elevation | Slope | Temperature | Precipitation |
---|---|---|---|---|---|---|
q-statistic | 0.537 | 0.625 | 0.512 | 0.531 | 0.515 | 0.190 |
P value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
LULC | - | - | - | - | - | - |
NDVI | Y | - | - | - | - | - |
Elevation | Y | Y | - | - | - | - |
Slope | N | Y | N | - | - | - |
Temperature | Y | Y | N | N | - | - |
Precipitation | Y | Y | Y | Y | Y | - |
Table 4 Influence power index of the explanatory factors on the pattern of surface albedo in Beijing, 2015, and the significant differences between them.
Variables | LULC | NDVI | Elevation | Slope | Temperature | Precipitation |
---|---|---|---|---|---|---|
q-statistic | 0.537 | 0.625 | 0.512 | 0.531 | 0.515 | 0.190 |
P value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
LULC | - | - | - | - | - | - |
NDVI | Y | - | - | - | - | - |
Elevation | Y | Y | - | - | - | - |
Slope | N | Y | N | - | - | - |
Temperature | Y | Y | N | N | - | - |
Precipitation | Y | Y | Y | Y | Y | - |
Variables | LULC | NDVI | Elevation | Slope | Temperature | Precipitation |
---|---|---|---|---|---|---|
LULC | 0.537 | |||||
NDVI | 0.710* | 0.625 | ||||
Elevation | 0.645* | 0.691* | 0.512 | |||
Slope | 0.644* | 0.690* | 0.629* | 0.531 | ||
Temperature | 0.641* | 0.689* | 0.553* | 0.630* | 0.515 | |
Precipitation | 0.573* | 0.648* | 0.535* | 0.567* | 0.531* | 0.190 |
Table 5 Interactions between explanatory factors in their influences of the spatial pattern of surface albedo in Beijing, 2015
Variables | LULC | NDVI | Elevation | Slope | Temperature | Precipitation |
---|---|---|---|---|---|---|
LULC | 0.537 | |||||
NDVI | 0.710* | 0.625 | ||||
Elevation | 0.645* | 0.691* | 0.512 | |||
Slope | 0.644* | 0.690* | 0.629* | 0.531 | ||
Temperature | 0.641* | 0.689* | 0.553* | 0.630* | 0.515 | |
Precipitation | 0.573* | 0.648* | 0.535* | 0.567* | 0.531* | 0.190 |
[1] | Bao P Y, Zhang Y J, Gong L, et al. 2007. Study on consistency of land surface albedo obtained from ETM+ and MODIS. Journal of Hohai University (Natural Sciences), 35(1):67-71. (in Chinese). |
[2] | Betts A K, Desjardins R L, Worth D. 2007. Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agricultural and Forest Meteorology, 142(2-4):156-169. |
[3] | Bounoua L, Defries R, Collatz G J, et al. 2002. Effects of land cover conversion on surface climate. Climatic Change, 52(1-2):29-64. |
[4] | Cao F, Ge Y, Wang J F. 2013. Optimal discretization for Geographical Detectors-based risk assessment. Giscience & Remote Sensing, 50(1):78-92. |
[5] | Chen X H. 1999. Relationship between surface albedo and some meteorological factors. Journal of Chengdu Institute of Meteorology, 14(3):233-238. (in Chinese) |
[6] | Chu L, Huang C, Liu Q S, et al. 2019. Spatial heterogeneity of winter wheat yield and its determinants in the Yellow River Delta, China. Sustainability, 12(1):135. DOI: 10.3390/su12010135. |
[7] | Davidson A, Wang S S. 2005. Spatiotemporal variations in land surface albedo across Canada from MODIS observations. Canadian Journal of Remote Sensing, 31(5):377-390. |
[8] | Dickinson R E. 1983. Land surface processes and climate—Surface albedos and energy balance. Advances in Geophysics, 25:305-353. |
[9] | Ding Y T, Zhang M, Qian X Y, et al. 2019. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. Journal of Cleaner Production, 211:1480-1490. |
[10] | Golkar F, Sabziparvar A A, Khanbilvardi R, et al. 2018. Estimation of instantaneous air temperature using remote sensing data. International Journal of Remote Sensing, 39(1):258-275. |
[11] | Govaerts Y, Lattanzio A. 2008. Estimation of surface albedo increase during the eighties Sahel drought from Meteosat observations. Global and Planetary Change, 64(3-4):139-145. |
[12] | Guan X D, Huang J P, Guo N, et al. 2009. Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the Loess Plateau. Advances in Atmospheric Sciences, 26(4):692-700. |
[13] | He T, Liang S L, Song D X. 2014. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981-2010 from multiple satellite products. Journal of Geophysical Research: Atmospheres, 119(17):10281-10298. |
[14] | Hu Y, Wang J F, Li X H, et al. 2011. Geographical Detector-based risk assessment of the under-five mortality in the 2008 Wenchuan Earthquake, China. Plos One, 6(6):1-8. |
[15] | Li H F, Yuan Z L, Yu T, et al. 2012. Surface albedo estimating based on HJ-1/CCD and relationship analysis between albedo and NDVI. Remote Sensing Information, 27(4):16-21. (in Chinese). |
[16] | Liao Y L, Wang J F, Wu J L, et al. 2010. Spatial analysis of neural tube defects in a rural coal mining area. International Journal of Environmental Health Research, 20(6):439-450. |
[17] | Liu H Z, Wang B M, Fu C B. 2008. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, northeastern China. Advances in Atmospheric Sciences, 25(5):757-764. |
[18] | Liu J Y, Kuang W H, Zhang Z X, et al. 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. Journal of Geographical Sciences, 24(2):195-210. |
[19] | Liu N F, Liu Q, Wang L Z, et al. 2013 a. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrology and Earth System Sciences, 17(6):2121-2129. |
[20] | Liu Q Q, Cui Y P, Liu S J, et al. 2019. Study on surface albedo of spectral radiation of different land use types in China. Remote Sensing Technology and Application, 34(1):45-56. (in Chinese). |
[21] | Liu Q, Wang L Z, Qu Y, et al. 2013b. Preliminary evaluation of the long-term GLASS albedo product. International Journal of Digital Earth, 6(S1):69-95. |
[22] | Liu Z J, Shao Q Q, Tao J, et al. 2015. Intra-annual variability of satellite observed surface albedo associated with typical land cover types in China. Journal of Geographical Sciences, 25(1):35-44. |
[23] | Loarie S R, Lobell D B, Asner G P, et al. 2011. Direct impacts on local climate of sugar-cane expansion in Brazil. Nature Climate Change, 1(2):105-109. |
[24] | Lou C R, Liu H Y, Li Y F, et al. 2016. Socioeconomic drivers of PM2.5 in the accumulation phase of air pollution episodes in the Yangtze River Delta of China. International Journal of Environmental Research and Public Health, 13(10):1-19. |
[25] | Malahlela O E, Adjorlolo C, Olwoch J M, et al. 2019. Integrating geostatistics and remote sensing for mapping the spatial distribution of cattle hoofprints in relation to malaria vector control. International Journal of Remote Sensing, 40(15):5917-5937. |
[26] | Nikolaos B, Nektarios C. 2015. Estimation of the land surface albedo changes in the Broader Mediterranean Area, based on 12 years of satellite observations. Remote Sensing, 7(12):16150-16163. |
[27] | Nolin A W, Stroeve J. 1997. The changing albedo of the Greenland ice sheet: Implications for climate modeling. Annals of Glaciology, 25:51-57. |
[28] | Qu Y, Liu Q, Liang S L, et al. 2014. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 52(2):907-919. |
[29] | Ranson K J, Irons J R, Daughtry C S T. 1991. Surface albedo from bidirectional reflectance. Remote Sensing of Environment, 35(2-3):201-211. |
[30] | Richardson A D, Keenan T F, Migliavacca M, et al. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169:156-173. |
[31] | Robinson D A. 1997. Hemispheric snow cover and surface albedo for model validation. Annals of Glaciology, 25:241-245. |
[32] | Russell M J, Nunez M, Chladil M A, et al. 1997. Conversion of nadir, narrowband reflectance in red and near-infrared channels to hemispherical surface albedo. Remote Sensing of Environment, 61(1):16-23. |
[33] | Schaaf C B, Gao F, Strahler A H, et al. 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83(1-2):135-148. |
[34] | Wang G, Han L, Ji X J. 2011. Research of the reason for variations of surface albedo in different areas in China from 1982 to 1998. Journal Chongqing University Technology (Nature Science), 28(4):79-83. (in Chinese) |
[35] | Wang J F, Hu Y. 2012. Environmental health risk detection with GeogDetector. Environmental Modelling & Software, 33:114-115. |
[36] | Wang J F, Li X H, Christakos G, et al. 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. International Journal of Geographical Information Science, 24(1):107-127. |
[37] | Wang J F, Zhang T L, Fu B J. 2016. A measure of spatial stratified heterogeneity. Ecological Indicators, 67:250-256. |
[38] | Wang L Z, Chen L J. 2018. The impact of new transportation modes on population distribution in Jing-Jin-Ji region of China. Scientific Data, 5:170204. DOI: 10.1038/sdata.2017.204 |
[39] | Wang S S, Davidson A. 2007. Impact of climate variations on surface albedo of a temperate grassland. Agricultural and Forest Meteorology, 142(2-4):133-142. |
[40] | Wang S S. 2005. Dynamics of surface albedo of a boreal forest and its simulation. Ecological Modelling, 183(4):477-494. |
[41] | Wang Z B, Liang L W, Sun Z, et al. 2019. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. Journal of Environmental Management, 243:227-239. |
[42] | Xiao D, Tao F, Moiwo J P. 2011. Research progress on surface albedo under global change. Advances in Earth Science, 26(11):1217-1224. |
[43] | Xue H Z, Zhang G D, Zhou H M, et al. 2019 Time series variation characteristics and parameterization of land surface albedo in several typical land cover types. Journal of Beijing Normal University (Natural Science), 55(2):272-283. (in Chinese). |
[44] | Yan Y C, Ju H R, Zhang S R, et al. 2019. Spatiotemporal patterns and driving forces of urban expansion in coastal areas: A study on urban agglomeration in the Pearl River Delta, China. Sustainability, 12(1):191. DOI: 10.3390/su12010191 |
[45] | Yang J Q, Li Z, Zhai P, et al. 2020. The influence of soil moisture and solar altitude on surface spectral albedo in arid area. Environmental Research Letters, 15(3): 1‒10. |
[46] | Yang J, Chen H B, Wang K C, et al. 2006. Analysis of the surface albedo distribution and variation in Beijing region by using the MODIS data. Remote Sening Technology and Application, 21(5):503-506. (in Chinese). |
[47] | Yang W T, Deng M, Xu F, et al. 2018. Prediction of hourly PM2.5 using a space-time support vector regression model. Atmospheric Environment, 181:12-19. |
[48] | Yuan L H, Chen X Q, Wang X Y, et al. 2019. Spatial associations between NDVI and environmental factors in the Heihe River Basin. Journal of Geographical Sciences, 29(9):1548-1564. |
[49] | Zhang X T, Liang S L, Wang K C, et al. 2010. Analysis of global land surface shortwave broadband albedo from multiple data sources. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3):296-305. |
[50] | Zhang Y H, Lu H P, Qu W C. 2020. Geographical detection of traffic accidents spatial stratified heterogeneity and influence factors. International Journal of Environmental Research and Public Health, 17(2):572. DOI: 10.3390/ijerph17020572. |
[51] | Zhang Y M. 2008. Spectrum characteristics of surface features reflection and high spectral imaging remote sensing. Electro-Optic Technology Application, 23(5):6-11. |
[52] | Zhou C, Zhu N N, Xu J H, et al. 2019. The contribution rate of driving factors and their interactions to temperature in the Yangtze River Delta region. Atmosphere, 11(1):32. DOI: 10.3390/atmos11010032. |
[53] | Zhou L, Dickinson R E, Tian Y, et al. 2003. Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. Journal of Geophysical Research: Atmospheres, 108(D15): 4488. DOi: 10.1029/2002JD003326. |
[1] | FENG Yunfei, DI Yingwei, ZHANG Jing, ZHANG Xianzhou, SHI Peili, Niu Ben. Impact of Grazing Exclusion on the Surface Heat Balance in North Tibet [J]. Journal of Resources and Ecology, 2020, 11(3): 283-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||