Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (4): 489-497.DOI: 10.5814/j.issn.1674-764x.2021.04.007
• Resource Economy • Previous Articles Next Articles
WANG Bin1(), SUN Yehong2, JIAO Wenjun3,*(
)
Received:
2021-01-22
Accepted:
2021-04-22
Online:
2021-07-30
Published:
2021-09-30
Contact:
JIAO Wenjun
About author:
WANG Bin, E-mail: ylwangbin@sina.com
Supported by:
WANG Bin, SUN Yehong, JIAO Wenjun. Ecological Benefit Evaluation of Agricultural Heritage System Conservation—A Case Study of the Qingtian Rice-Fish Culture System[J]. Journal of Resources and Ecology, 2021, 12(4): 489-497.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.04.007
Level 1 | Level 2 |
---|---|
Agricultural biodiversity | Rice varieties |
Fish varieties | |
Other crop varieties | |
Livestock and poultry varieties | |
Economic fruits | |
Medicinal plants | |
Relevant biodiversity | Biological varieties in paddy fields |
Biological varieties in residential areas | |
Biological varieties in forest lands | |
Other wild animals | |
Ecosystem structure and function | Ecosystem types |
Ecosystem structure | |
Ecosystem services | |
Ecological environment quality of paddy fields | Soil nutrients |
Water quality | |
Diseases and insect pests | |
Ecological environment quality of the rural area | Rural landscape |
Farmland landscape | |
Water environment |
Table 1 The ecological benefit evaluation indicator system
Level 1 | Level 2 |
---|---|
Agricultural biodiversity | Rice varieties |
Fish varieties | |
Other crop varieties | |
Livestock and poultry varieties | |
Economic fruits | |
Medicinal plants | |
Relevant biodiversity | Biological varieties in paddy fields |
Biological varieties in residential areas | |
Biological varieties in forest lands | |
Other wild animals | |
Ecosystem structure and function | Ecosystem types |
Ecosystem structure | |
Ecosystem services | |
Ecological environment quality of paddy fields | Soil nutrients |
Water quality | |
Diseases and insect pests | |
Ecological environment quality of the rural area | Rural landscape |
Farmland landscape | |
Water environment |
Level 1 | Level 2 | Grassland | River | Farmland | Forest | Reservoir | Wetland | Desert |
---|---|---|---|---|---|---|---|---|
Provisioning services | Food production | 193.11 | 238.02 | 449.10 | 148.20 | 238.02 | 161.68 | 8.98 |
Material production | 161.68 | 157.19 | 175.15 | 1338.32 | 157.19 | 107.78 | 17.96 | |
Regulating services | Gas regulation | 673.65 | 229.04 | 323.35 | 1940.11 | 229.04 | 1082.33 | 26.95 |
Climate regulation | 700.60 | 925.15 | 435.63 | 1827.84 | 925.15 | 6085.31 | 58.38 | |
Water temperature regulation | 682.63 | 8429.61 | 345.81 | 1836.82 | 8429.61 | 6035.90 | 31.44 | |
Waste disposal | 592.81 | 6669.14 | 624.25 | 772.45 | 6669.14 | 6467.04 | 116.77 | |
Supporting services | Soil conservation | 1005.98 | 184.13 | 660.18 | 1805.38 | 184.13 | 893.71 | 76.35 |
Maintain biodiversity | 839.82 | 1540.41 | 458.08 | 2025.44 | 1540.41 | 1657.18 | 179.64 | |
Landscape | 390.72 | 1994.00 | 76.35 | 934.13 | 1994.00 | 2106.28 | 107.78 |
Table 2 Unit area ecosystem service values of different ecosystems (Unit: yuan ha-1 yr-1)
Level 1 | Level 2 | Grassland | River | Farmland | Forest | Reservoir | Wetland | Desert |
---|---|---|---|---|---|---|---|---|
Provisioning services | Food production | 193.11 | 238.02 | 449.10 | 148.20 | 238.02 | 161.68 | 8.98 |
Material production | 161.68 | 157.19 | 175.15 | 1338.32 | 157.19 | 107.78 | 17.96 | |
Regulating services | Gas regulation | 673.65 | 229.04 | 323.35 | 1940.11 | 229.04 | 1082.33 | 26.95 |
Climate regulation | 700.60 | 925.15 | 435.63 | 1827.84 | 925.15 | 6085.31 | 58.38 | |
Water temperature regulation | 682.63 | 8429.61 | 345.81 | 1836.82 | 8429.61 | 6035.90 | 31.44 | |
Waste disposal | 592.81 | 6669.14 | 624.25 | 772.45 | 6669.14 | 6467.04 | 116.77 | |
Supporting services | Soil conservation | 1005.98 | 184.13 | 660.18 | 1805.38 | 184.13 | 893.71 | 76.35 |
Maintain biodiversity | 839.82 | 1540.41 | 458.08 | 2025.44 | 1540.41 | 1657.18 | 179.64 | |
Landscape | 390.72 | 1994.00 | 76.35 | 934.13 | 1994.00 | 2106.28 | 107.78 |
Ecosystem types | Fangshan Town | Longxian Village | ||||
---|---|---|---|---|---|---|
2005 | 2013 | Change | 2005 | 2013 | Change | |
Farmland | 863.79 | 860.78 | -3.01 | 78.13 | 78.74 | 0.61 |
Forest | 2755.75 | 2763.03 | 7.28 | 371.26 | 372.15 | 0.89 |
Wetland | 2.51 | 2.47 | -0.04 | 0 | 0 | 0 |
River | 25.32 | 25.50 | 0.18 | 1.19 | 1.19 | 0 |
Reservoir | 9.56 | 9.53 | -0.03 | 0 | 0 | 0 |
Grassland | 317.02 | 288.15 | -28.87 | 4.56 | 0.35 | -4.21 |
Bare land | 11.30 | 15.49 | 4.19 | 0 | 0 | 0 |
Urban | 116.47 | 136.76 | 20.29 | 9.14 | 11.85 | 2.71 |
Total | 4101.71 | 4101.71 | 0 | 464.28 | 464.28 | 0 |
Table 3 The areas of different ecosystems in Fangshan town and Longxian village (Unit: ha)
Ecosystem types | Fangshan Town | Longxian Village | ||||
---|---|---|---|---|---|---|
2005 | 2013 | Change | 2005 | 2013 | Change | |
Farmland | 863.79 | 860.78 | -3.01 | 78.13 | 78.74 | 0.61 |
Forest | 2755.75 | 2763.03 | 7.28 | 371.26 | 372.15 | 0.89 |
Wetland | 2.51 | 2.47 | -0.04 | 0 | 0 | 0 |
River | 25.32 | 25.50 | 0.18 | 1.19 | 1.19 | 0 |
Reservoir | 9.56 | 9.53 | -0.03 | 0 | 0 | 0 |
Grassland | 317.02 | 288.15 | -28.87 | 4.56 | 0.35 | -4.21 |
Bare land | 11.30 | 15.49 | 4.19 | 0 | 0 | 0 |
Urban | 116.47 | 136.76 | 20.29 | 9.14 | 11.85 | 2.71 |
Total | 4101.71 | 4101.71 | 0 | 464.28 | 464.28 | 0 |
Ecosystem types | Fangshan Town | Longxian Village | ||||
---|---|---|---|---|---|---|
2005 | 2013 | Change | 2005 | 2013 | Change | |
Farmland | 306.46 | 305.39 | -1.07 | 27.72 | 27.93 | 0.21 |
Forest | 3480.20 | 3489.35 | 9.15 | 468.90 | 469.97 | 1.07 |
Wetland | 6.18 | 6.08 | -0.10 | 0 | 0 | 0 |
River | 51.58 | 51.94 | 0.36 | 2.43 | 2.43 | 0 |
Reservoir | 19.47 | 19.40 | -0.07 | 0 | 0 | 0 |
Grassland | 166.15 | 151.02 | -15.13 | 2.39 | 0.18 | -2.21 |
Bare land* | 0.71 | 0.97 | 0.26 | 0 | 0 | 0 |
Total | 4030.70 | 4024.15 | -6.55 | 501.40 | 500.51 | -0.89 |
Table 4 The ecosystem service values of different ecosystems in Fangshan Town and Longxian Village (Unit: 104yuan yr-1)
Ecosystem types | Fangshan Town | Longxian Village | ||||
---|---|---|---|---|---|---|
2005 | 2013 | Change | 2005 | 2013 | Change | |
Farmland | 306.46 | 305.39 | -1.07 | 27.72 | 27.93 | 0.21 |
Forest | 3480.20 | 3489.35 | 9.15 | 468.90 | 469.97 | 1.07 |
Wetland | 6.18 | 6.08 | -0.10 | 0 | 0 | 0 |
River | 51.58 | 51.94 | 0.36 | 2.43 | 2.43 | 0 |
Reservoir | 19.47 | 19.40 | -0.07 | 0 | 0 | 0 |
Grassland | 166.15 | 151.02 | -15.13 | 2.39 | 0.18 | -2.21 |
Bare land* | 0.71 | 0.97 | 0.26 | 0 | 0 | 0 |
Total | 4030.70 | 4024.15 | -6.55 | 501.40 | 500.51 | -0.89 |
Items | Limit value | Result | Decision |
---|---|---|---|
pH | - | 5.92 | - |
TP (%) | - | 0.026 | - |
Available P (mg L-1) | - | 12.5 | - |
Available K (mg L-1) | - | 92.5 | - |
TN (%) | - | 0.133 | - |
SOM (%) | - | 3.41 | - |
DDT (mg kg-1) | ≤0.50 | 6.67×10-3 | Up to standard |
HCH (mg kg-1) | ≤0.50 | <1.0×10-5 | Up to standard |
Pb (mg kg-1) | ≤250 | 32 | Up to standard |
As (mg kg-1) | ≤30 | 4.04 | Up to standard |
Hg (mg kg-1) | ≤0.30 | 0.08 | Up to standard |
Cr (mg kg-1) | ≤250 | <30 | Up to standard |
Cd (mg kg-1) | ≤0.30 | <0.2 | Up to standard |
Cu (mg kg-1) | ≤50 | 19 | Up to standard |
Table 5 The test report of soil quality in paddy fields in Longxian Village
Items | Limit value | Result | Decision |
---|---|---|---|
pH | - | 5.92 | - |
TP (%) | - | 0.026 | - |
Available P (mg L-1) | - | 12.5 | - |
Available K (mg L-1) | - | 92.5 | - |
TN (%) | - | 0.133 | - |
SOM (%) | - | 3.41 | - |
DDT (mg kg-1) | ≤0.50 | 6.67×10-3 | Up to standard |
HCH (mg kg-1) | ≤0.50 | <1.0×10-5 | Up to standard |
Pb (mg kg-1) | ≤250 | 32 | Up to standard |
As (mg kg-1) | ≤30 | 4.04 | Up to standard |
Hg (mg kg-1) | ≤0.30 | 0.08 | Up to standard |
Cr (mg kg-1) | ≤250 | <30 | Up to standard |
Cd (mg kg-1) | ≤0.30 | <0.2 | Up to standard |
Cu (mg kg-1) | ≤50 | 19 | Up to standard |
Items | Limit value | Result | Decision |
---|---|---|---|
Anionic surface active agent (mg L-1) | ≤5 | Not detected (<0.05) | Up to standard |
pH | 5.5-8.5 | 8.17 | Up to standard |
Total salt content (mg L-1) | ≤1000 (Non-saline land area) | 21 | Up to standard |
≤2000 (Saline land area) | Up to standard | ||
Chloride (mg L-1) | ≤350 | 2.7 | Up to standard |
Sulfide (mg L-1) | ≤1 | Not detected (<0.005) | Up to standard |
Total Hg (mg L-1) | ≤0.001 | Not detected (<0.0001) | Up to standard |
Cr (mg L-1) | ≤0.01 | Not detected (<0.0001) | Up to standard |
Total arsenic (mg L-1) | ≤0.05 | Not detected (<0.007) | Up to standard |
Chromium (hexavalent) (mg L-1) | ≤0.1 | Not detected (<0.004) | Up to standard |
Cu (mg L-1) | ≤0.5 | Not detected (<0.01) | Up to standard |
Zn (mg L-1) | ≤2 | Not detected (<0.006) | Up to standard |
Se (mg L-1) | ≤0.02 | Not detected (<0.00025) | Up to standard |
Fluoride (mg L-1) | ≤2 (General area) | Not detected (<0.05) | Up to standard |
≤3 (High fluorine area) | |||
Cyanide (mg L-1) | ≤0.5 | Not detected (<0.25) | Up to standard |
Total phosphorus (mg L-1) | - | Not detected (<0.01) | Up to standard |
Table 6 The test report of water quality of the paddy fields
Items | Limit value | Result | Decision |
---|---|---|---|
Anionic surface active agent (mg L-1) | ≤5 | Not detected (<0.05) | Up to standard |
pH | 5.5-8.5 | 8.17 | Up to standard |
Total salt content (mg L-1) | ≤1000 (Non-saline land area) | 21 | Up to standard |
≤2000 (Saline land area) | Up to standard | ||
Chloride (mg L-1) | ≤350 | 2.7 | Up to standard |
Sulfide (mg L-1) | ≤1 | Not detected (<0.005) | Up to standard |
Total Hg (mg L-1) | ≤0.001 | Not detected (<0.0001) | Up to standard |
Cr (mg L-1) | ≤0.01 | Not detected (<0.0001) | Up to standard |
Total arsenic (mg L-1) | ≤0.05 | Not detected (<0.007) | Up to standard |
Chromium (hexavalent) (mg L-1) | ≤0.1 | Not detected (<0.004) | Up to standard |
Cu (mg L-1) | ≤0.5 | Not detected (<0.01) | Up to standard |
Zn (mg L-1) | ≤2 | Not detected (<0.006) | Up to standard |
Se (mg L-1) | ≤0.02 | Not detected (<0.00025) | Up to standard |
Fluoride (mg L-1) | ≤2 (General area) | Not detected (<0.05) | Up to standard |
≤3 (High fluorine area) | |||
Cyanide (mg L-1) | ≤0.5 | Not detected (<0.25) | Up to standard |
Total phosphorus (mg L-1) | - | Not detected (<0.01) | Up to standard |
[1] | Fang L, Zhang J E, Jiang Y P. 2007. The conservation and sustainable development of the Rice-Fish farming system in Qingtian County, Zhejiang Province as one of Globally Important Ingenious Agricultural Heritage Systems. Chinese Agricultural Science Bulletin, 23(1):389-392. (in Chinese) |
[2] |
Jiao W J, Fuller A M, Xu S Y, et al. 2016. Socio-ecological adaptation of Agricultural Heritage Systems in modern China: Three cases in Qingtian County, Zhejiang Province. Sustainability, 8(12):1260. DOI: 10.3390/su8121260.
DOI URL |
[3] | Koohafkan P, Cruz M J. 2009. Conservation and adaptive management of Globally Important Agricultural Heritage System (GIAHS). Resources Science, 31(1):4-9. (in Chinese) |
[4] |
Li W H, Liu M C, Min Q W. 2012. Agricultural heritage conservation: New opportunity for developing eco-agriculture. Chinese Journal of Eco- Agriculture, 20(6):663-667. (in Chinese)
DOI URL |
[5] | Min Q W. 2006. GIAHS: A new kind of world heritage. Resources Science, 28(4):206-208. (in Chinese) |
[6] | Min Q W, He L, Zhang D. 2011. Agricultural heritage research in China:. |
[7] | Sun Q Z, Guan Y. 2012. Agro-cultural heritage research and conservation practices in China: Progresses and perspectives. Journal of China Agricultural University ( Social Sciences) , 29(3):34-43. (in Chinese) |
[8] |
Sun Y H, Min Q W, Cheng S K. 2008. Value of the GIAHS-China traditional Rice-Fish system. Chinese Journal of Eco-Agriculture, 16(4):991-994. (in Chinese)
DOI URL |
[9] |
Wang C H, Li S F, Xiang S P, et al. 2006. Genetic parameter estimates for growth-related traits in Oujiang color common carp ( Cyprinus carpio var. color). Aquaculture , 259(1-4):103-107.
DOI URL |
[10] |
Wang C H, Li S F. 2004. Phylogenetic relationships of ornamental (koi) carp, Oujiang color carp and Long-fin carp revealed by mitochondrial DNA COII gene sequences and RAPD analysis. Aquaculture, 231(1-4):83-91.
DOI URL |
[11] | Wang X F, Yu S L, Chen H W. 2006. Qingtian Rice-Fish Culture System and it’s development measures. Journal of Zhejiang Agricultural Sciences, 5:492-494. (in Chinese) |
[12] | Wang Z. 1997. Chronicles of agriculture of Yongjia County. Beijing, China: Ocean Press. (in Chinese) |
[13] | Wu M F, Zhou A L. 2014. Protection and development experience of Globally Important Agriculture Heritage System (GIAHS) Rice-Fish Culture System in Qingtian County, Zhejiang Province. World Agriculture, (11):152-155. (in Chinese) |
[14] | Xie G D, Zhen L, Lu C X, et al. 2008. Expert knowledge based valuation method of ecosystem services in China. Journal of Natural Resources, 23(5):911-919. (in Chinese) |
[15] |
Xie J, Wu X, Tang J J, et al. 2010. Chemical fertilizer reduction and soil fertility maintenance in Rice-Fish coculture system. Frontiers of Agriculture in China, 4(4):422-429.
DOI URL |
[16] |
Xie J, Wu X, Tang J J, et al. 2011. Conservation of traditional rice varieties in a Globally Important Agricultural Heritage System (GIAHS): Rice-Fish co-culture. Agricultural Sciences in China, 10(5):754-761.
DOI URL |
[17] | Xie J, Hu L L, Tang J J, et al. 2011. Ecological mechanisms underlying the sustainability of the agricultural heritage Rice-Fish co-culture system. Proceedings of the National Academy of Sciences of the USA, 108(50):1381-1387. |
[18] | Xie J. 2011. Ecosystem functioning of species interactions in farming system: A case study on globally important Agricultural Heritage System. Diss., Hangzhou, China: Zhejiang University. (in Chinese) |
[19] | You X L. Zhong Q H eds. Multi-stakeholder processes in the conservation of Agricultural Heritage Systems in China. 2006. Rice-Fish agriculture:One of the typical sustainable traditional agricultural models . In:Min Q W, China: Environmental Science Press. (in Chinese) |
[20] | Zhang D, Min Q W, He L, et al. 2016. Agro-biodiversity features, conservation and utilization of China’s globally important Agricultural Heritage Systems. Chinese Journal of Eco-Agriculture, 24(4):451-459. (in Chinese) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||