Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (3): 319-331.DOI: 10.5814/j.issn.1674-764x.2021.03.002
• Forest and Grassland Ecosystem • Previous Articles Next Articles
GUO Caiyun1,2, ZHAO Dongsheng1,*(), ZHENG Du1, ZHU Yu1,2
Received:
2020-08-31
Accepted:
2021-02-24
Online:
2021-05-30
Published:
2021-07-30
Contact:
ZHAO Dongsheng
About author:
GUO Caiyun, E-mail: guocy.17b@igsnrr.ac.cn
Supported by:
GUO Caiyun, ZHAO Dongsheng, ZHENG Du, ZHU Yu. Effects of Grazing on the Grassland Vegetation Community Characteristics in Inner Mongolia[J]. Journal of Resources and Ecology, 2021, 12(3): 319-331.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.03.002
Fig. 2 Percentage changes of vegetation community characteristics in response to grazing in Inner Mongolia Note: Vegetation coverage (VC), total biomass (TB), above-ground biomass (AGB), under-ground biomass (UGB), plant density (PD), and the SI were included in the meta-analysis. Error bars indicate 95% confidence intervals (CIs). A significant effect is indicated if the 95% CI does not overlap zero. The numbers above or below the error bars show the number of observations used in the analysis of each characteristic.
Fig. 3 Percentage changes of vegetation community characteristics due to differing grazing intensity, grazing duration, and grassland type. Note: Values are means ± 95% CI.
Subgroup | Category | QB | P |
---|---|---|---|
Grazing intensity | VC | 5.6528 | 0.338 |
PD | 0.4744 | 0.896 | |
TB | 2.9992 | 0.085 | |
AGB | 68.0871 | 0.001 | |
UGB | 4.6779 | 0.344 | |
SI | 5.9352 | 0.413 | |
Grassland type | VC | 25.3576 | 0.009 |
PD | 5.8753 | 0.275 | |
TB | 5.1752 | 0.022 | |
AGB | 12.3124 | 0.061 | |
UGB | 18.8179 | 0.005 | |
SI | 2.4998 | 0.723 | |
Grazing duration | VC | 0.9955 | 0.834 |
PD | 5.2990 | 0.148 | |
TB | 2.8244 | 0.106 | |
AGB | 9.7965 | 0.085 | |
UGB | 7.4774 | 0.085 | |
SI | 72.7619 | 0.001 |
Table 1 Between-group heterogeneity (QB) and probability (P) for grazing effects on VC, PD, TB, AGB, UGB, and SI among different grazing intensities, grassland types, and grazing durations.
Subgroup | Category | QB | P |
---|---|---|---|
Grazing intensity | VC | 5.6528 | 0.338 |
PD | 0.4744 | 0.896 | |
TB | 2.9992 | 0.085 | |
AGB | 68.0871 | 0.001 | |
UGB | 4.6779 | 0.344 | |
SI | 5.9352 | 0.413 | |
Grassland type | VC | 25.3576 | 0.009 |
PD | 5.8753 | 0.275 | |
TB | 5.1752 | 0.022 | |
AGB | 12.3124 | 0.061 | |
UGB | 18.8179 | 0.005 | |
SI | 2.4998 | 0.723 | |
Grazing duration | VC | 0.9955 | 0.834 |
PD | 5.2990 | 0.148 | |
TB | 2.8244 | 0.106 | |
AGB | 9.7965 | 0.085 | |
UGB | 7.4774 | 0.085 | |
SI | 72.7619 | 0.001 |
Spatial scale | Global (%) | China (%) | Inner Mongolia (%) |
---|---|---|---|
Milchunas and Lauenroth, 1993 | Yan et al., 2013 | This study | |
TB | No significant effect | -58.34 | -45.12 |
AGB | -23 | -42.77 | -35.04 |
UGB | 20 | -23.13 | -13.85 |
Table 2 Percentage changes in grazing effects globally, in China, and in Inner Mongolia
Spatial scale | Global (%) | China (%) | Inner Mongolia (%) |
---|---|---|---|
Milchunas and Lauenroth, 1993 | Yan et al., 2013 | This study | |
TB | No significant effect | -58.34 | -45.12 |
AGB | -23 | -42.77 | -35.04 |
UGB | 20 | -23.13 | -13.85 |
Fig. 10 Bubble plots of the meta-regression results between the responses of TB to the SI reduction Note: The size of each bubble is the relative weight of the effect size (response ratio, ln R) in the meta-regression. Larger bubbles indicate study outcomes that contributed a greater overall weight in the meta-regressions.
Fig. 11 Structure equation modeling examining the direct and indirect effects on vegetation community characteristics of grasslands in Inner Mongolia (n = 159) Note: Double-headed arrows represent covariance between related variables. Single-headed arrows indicate the hypothesized direction of causation. The numbers in red adjacent to arrows are standardized path coefficients.
1 |
Adler P B, Seabloom E W, Borer E T , et al. 2011. Productivity is a poor predictor of plant species richness. Science, 333(6050):1750-1753.
DOI URL |
2 |
Al-Mufti M M, Sydes C L, Furness S B , et al. 1977. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology, 65(3):759-791.
DOI URL |
3 | Bai Y F, Li L H, Huang J H , et al. 2001. The influence of plant diversity and functional composition on ecosystem stability of four Stipa communities in the Inner Mongolia Plateau. Acta Botanica Sinica, 43(3):280-287. |
4 |
Bai Y F, Wu J G, Clark C M , et al. 2012. Grazing alters ecosystem functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 49(6):1204-1215.
DOI URL |
5 | Bai W M, Fang Y, Zhou M , et al. 2015. Heavily intensified grazing reduces root production in an Inner Mongolia temperate steppe. Agriculture, Ecosystems & Environment, 200:143-150. |
6 |
Boval M, Dixon R M . 2012. The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animal, 6(5):748-762.
DOI PMID |
7 | Burke I C, Lauenroth W K, Parton W J . 1997. Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology, 78(5):1130-1340. |
8 | Cohen J . 1988. Statistical power analysis for the behavioral sciences. London, UK: Routledge. |
9 |
Connell J H . 1979. Intermediate-disturbance hypothesis. Science, 204(4399):1344-1345.
DOI URL |
10 |
Dangal S R S, Tian H Q, Lu C Q , et al. 2016. Synergistic effects of climate change and grazing on net primary production of Mongolian grasslands. Ecosphere, 7(5):e01274. DOI: 10.1002/ecs2.1274.
DOI |
11 |
de Mazancourt, Loreau M, Abbadie L . 1998. Grazing optimization and nutrient cycling: When do herbivores enhance plant production? Ecology, 79(7):2242-2252.
DOI URL |
12 |
Dong Y Q, Sun Z J, An S Z , et al. 2020. Community structure and carbon and nitrogen storage of sagebrush desert under grazing exclusion in Northwest China. Journal of Arid Land, 12(2):239-251.
DOI URL |
13 | Dong S K, Gao H W, Xu G C , et al. 2007. Farmer and professional attitudes to the large-scale ban on livestock grazing of grasslands in China. Environmental Conservation, 34(3):246-254. |
14 |
Dowling P M, Kemp D R, Ball P D , et al. 2005. Effect of continuous and time-control grazing on grassland components in south-eastern Australia. Australian Journal of Experimental Agriculture, 45(4):369-382.
DOI URL |
15 |
Du S, Shen J P, Sun Y F , et al. 2020. Grazing does not increase soil antibiotic resistome in two types of grasslands in Inner Mongolia, China. Applied Soil Ecology, 155:103644. DOI: 10.1016/j.apsoil.2020.103644.
DOI URL |
16 |
Fang J Y, Piao S L, Zhou L M , et al. 2005. Precipitation patterns alter growth of temperate vegetation. Geophysical Research Letters, 32(21):L21411. DOI: 10.1029/2005GL024231.
DOI URL |
17 |
Fay P A, Prober S M, Harpole W S , et al. 2015. Grassland productivity limited by multiple nutrients. Nature Plants, 1(7):15080. DOI: 10.1038 /nplants.2015.80.
DOI URL |
18 |
Fedrigo J K, Ataide P F, Filho J A , et al. 2017. Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland. Restoration Ecology, 26(4):677-685.
DOI URL |
19 |
Ferraro D O, Martín O . 2002. Effect of defoliation on grass growth: A quantitative review. Oikos, 98(1):125-133.
DOI URL |
20 |
Field R, O’Brien E M, Lavers C P . 2005. Global models for predicting woody plant richness from climate: Development and evaluation. Ecology, 86(9):2263-2277.
DOI URL |
21 | Focht T, Pillar V D . 2003. Spatial patterns and relations with site factors in a Campos grassland under grazing. Brazilian Journal of Biology, 63(3):423-436. |
22 | Gan L, Peng X, Peth S , et al. 2012. Effects of grazing intensity on soil thermal properties and heat flux under Leymus chinensis and Stipa grandis vegetation in Inner Mongolia, China. Soil & Tillage Research, 118:147-158. |
23 |
Gillman L N, Wright S D . 2006. The influence of productivity on the species richness of plants: A critical assessment. Ecology, 87(5):1234-1243.
PMID |
24 |
Gillson L, Hoffman M T . 2007. Ecology: Rangeland ecology in a changing world. Science, 315(5808):53-54.
DOI URL |
25 |
Gonnet J M, Guevara J C, Estevez O R . 2003. Perennial grass abundance along a grazing gradient in Mendoza, Argentina. Journal of Range Management, 56(4):364-369.
DOI URL |
26 | GB/T 34754-2017 B/T 34754-2017. 2017. Grade of grazing intensity on rangeland for the household ranch. Beijing, China: China Academic Journal Electronic Publishing House. (in Chinese) |
27 |
Guo Q F, Berry W L . 1998. Species richness and biomass: Dissection of the hump-shaped relationships. Ecology, 79(7):2555-2559.
DOI URL |
28 |
Hanke W, Böhner J, Dreber N , et al. 2014. The impact of livestock grazing on plant diversity: An analysis across dryland ecosystems and scales in southern Africa. Ecological Applications, 24(5):1188-1203.
DOI URL |
29 |
Hayley E, Jones J . 2010. Introduction to meta-analysis. Paediatric and Perinatal Epidemiology, 24:131-139.
DOI URL |
30 |
Hadgu K M, Rossing W A H, Kooistra L , et al. 2009. Spatial variation in species diversity, soil degradation and productivity in agricultural landscapes in the highlands of Tigray, northern Ethiopia. Food Security, 1(1):83-97.
DOI URL |
31 |
Haynes M A, Fang Z D, Waller D M . 2013. Grazing impacts on the diversity and composition of alpine rangelands in Northwest Yunnan. Journal of Plant Ecology, 6(2):122-130.
DOI URL |
32 |
Hedges L V, Gurevitch J, Curtis P S . 1999. The meta-analysis of response ratios in experimental ecology. Ecology, 80(4):1150-1156.
DOI URL |
33 | Hedges L V . 1984. Advances in statistical methods for meta-analysis. New Directions for Program Evaluation, ( 24):25-42. |
34 | IPCC. 2013. Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis: Summary for Policy makers. Cambridge, UK: Cambridge University Press. |
35 | Jobbágy E G, Sala O E, Paruelo J M . 2002. Patterns and controls of primary production in the Patagonian steppe: A remote sensing approach. Ecology, 83(2):307-319. |
36 |
Jain S, Collins L S, Hayek L A C . 2007. Relationship of benthic foraminiferal diversity to paleoproductivity in the Neogene Caribbean. Palaeogeography, Palaeoclimatology, Palaeoecology, 255(3-4):223-245.
DOI URL |
37 | Kondoh M . 2001. Unifying the relationships of species richness to productivity and disturbance. Proceedings of the Royal Society B: Biological Sciences, 268(1464):269-271. |
38 |
Kreft H, Jetz W . 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the USA, 104(14):5925-5930.
DOI URL |
39 |
Li Y H, Wang W, Liu Z L , et al. 2008. Grazing gradient versus restoration succession of Leymus chinensis(Trin.) Tzvel. Grassland in Inner Mongolia. Restoration Ecology, 16(4):572-583.
DOI URL |
40 |
Marcos G P, Willig M R . 2004. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. Journal of Mammalogy, 85(4):688-697.
DOI URL |
41 |
Mavridis D, Salanti G . 2014. How to assess publication bias: Funnel plot, trim-and-fill method and selection models. Evidence-based Mental Health, 17(1):30. DOI: 10.1136/eb-2013-101699.
DOI URL |
42 |
Mazumder P A . 1998. Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology, 79(8):2581-2592.
DOI URL |
43 |
McIntyre S, Nicholls A O, Graff P , et al. 2019. Experimental reintroduction of three grassland forbs to assess climate-adjusted provenancing, grazing protection and weed control. Australian Journal of Botany, 66(8):628-639.
DOI URL |
44 | Mcmanus W R, Reid J T, Donaldson L E . 1972. Studies of compensatory growth in sheep. Journal of Agricultural Science, 79(1):1-12. |
45 |
Mcnaughton S J . 1976. Serengeti migratory wildebeest: Facilitation of energy flow by grazing. Science, 191(4222):92-94.
DOI URL |
46 |
Milchunas D G, Sala O E, Lauenroth W K . 1988. A generalized model of the effects of grazing by large herbivores on grassland community structure. The American Naturalist, 132(1):87-106.
DOI URL |
47 |
Milchunas D G, Vandever M W, Ball L O , et al. 2011. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment. Rangeland Ecology & Management, 64(3):291-300.
DOI URL |
48 |
Milchunas D G, Lauenroth W K . 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63(4):327-366.
DOI URL |
49 |
Mittelbach G G, Steiner C F, Scheiner S M , et al. 2001. What is the observed relationship between species richness and productivity? Ecology, 82(9):2381-2396.
DOI URL |
50 |
Münkemüller T, Johst K . 2006. Compensatory versus over-compensatory density regulation: Implications for metapopulation persistence in dynamic landscapes. Ecological Modelling, 197(1-2):171-178.
DOI URL |
51 |
Nautiyal M C, Nautiyal B P, Prakash V . 2004. Effect of grazing and climatic changes on alpine vegetation of tungnath, Garhwal Himalaya, India. Environmentalist, 24(2):125-134.
DOI URL |
52 | Oesterheld M, Loreti J, Semmartin M , et al. 1999. Grazing, fire, and climate effects on primary productivity of grasslands and savannas. In: Walker L. (ed.). Ecosystems of disturbed ground. Oxford, UK: Elsevier Science. |
53 |
Patton B D, Dong X J, Nyren P E , et al. 2007. Effects of grazing intensity, precipitation, and temperature on forage production. Rangeland Ecology & Management, 60(6):656-665.
DOI URL |
54 |
Peter G, Funk F A, Loydi A , et al. 2012. Variation in specific composition and cover in grassland exposed to various grazing pressures in the Monte Rionegrino. Phyton, 81(2):233-237. (in Spanish)
DOI URL |
55 |
Peter B, Eric W S, Elizabeth T B , et al. 2011. Productivity is a poor predictor of plant species richness. Science, 333(6050):1750-1753.
DOI URL |
56 |
Ren H Y, Schönbach P, Wan H W , et al. 2012. Effects of grazing intensity and environmental factors on species composition and diversity in typical steppe of Inner Mongolia, China. Plos One, 7(12):e52180. DOI: 10.1371/journal.pone.0052180.
DOI URL |
57 |
Rodríguez C, Leoni E, Lezama F , et al. 2003. Temporal trends in species composition and plant traits in natural grasslands of Uruguay. Journal of Vegetation Science, 14(3):433-440.
DOI URL |
58 |
Xue R, Zheng S X, Bai Y F . 2010. Impacts of grazing intensity and management regimes on aboveground primary productivity and compensatory growth of grassland ecosystems in Inner Mongolia. Biodiversity Science, 18(3):300-311.
DOI URL |
59 |
Sala O E, Parton W J, Joyce L A , et al. 1988. Primary production of the central grassland region of the United States. Ecology, 69(1):40-45.
DOI URL |
60 |
Scheiner S M, Willig M R . 2005. Developing unified theories in ecology as exemplified with diversity gradients. The American Naturalist, 166(4):458-469.
PMID |
61 |
Šimova I, Li Y M, Storch D . 2013. Relationship between species richness and productivity in plants: The role of sampling effect, heterogeneity, and species pool. Journal of Ecology, 101(1):161-170.
DOI URL |
62 |
Scurlock J M O, Hall D O . 1998. The global carbon sink: A grassland perspective. Global Change Biology, 4(2):229-233.
DOI URL |
63 |
Shea K, Roxburgh S H, Rauschert E S J . 2004. Moving from pattern to process: Coexistence mechanisms under intermediate disturbance regimes. Ecology Letters, 7(6):491-508.
DOI URL |
64 |
Silletti A, Knapp A . 2002. Long-term responses of the grassland co-dominants Andropogon gerardii and Sorghastrum nutans to changes in climate and management. Plant Ecology, 163(1):15-22.
DOI URL |
65 |
Silva V, Catry F X, Fernandes P M , et al. 2019. Effects of grazing on plant composition, conservation status and ecosystem services of Natura 2000 shrub-grassland habitat types. Biodiversity and Conservation, 28(5):1205-1224.
DOI URL |
66 | Simons N K, Weisser W W . 2017. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nature Ecology & Evolution, 1(8):1136-1145. |
67 |
Su R N, Cheng J H, Chen D M , et al. 2017. Effects of grazing on spatiotemporal variations in community structure and ecosystem function on the grasslands of Inner Mongolia, China. Scientific Reports, 7(1):40. DOI: 10.1038/s41598-017-00105-y.
DOI URL |
68 |
Waide R B, Willig M R, Steiner C F , et al. 1999. The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30(1):257-300.
DOI URL |
69 | Wang S P, Li Y H, Wang Y F , et al. 2001. Effects of different stocking rates on plant diversity of Artemisia frigida in Inner Mongolia steppe. Journal of Botany, 43:89-96. |
70 | Wang S P, Wang Y F, Chen Z Z . 2003. Effect of climate change and grazing on populations of Cleistogenes squarrosa in Inner Mongolia steppe. Acta Phytoecologica Sinica, 27(3):337-343. |
71 | Wang S P, Wang Y F, Li Y , et al. 1998. The influence of different stocking rates on herbage regrowth and aboveground net primary production. Acta Agrestia Sinica, 8(1):15-20. |
72 |
Wang S P, Wilkes A, Zhang Z C , et al. 2011. Management and land-use change effects on soil carbon in northern China’s grasslands: A synthesis. Agriculture, Ecosystems & Environment, 142(3-4):329-340.
DOI URL |
73 |
Wang L, Luan L M, Hou F J , et al. 2020. Nexus of grazing management with plant and soil properties in northern China grasslands. Scientific Data, 7(1):39. DOI: 10.6084/m9.figshare.11663340.
DOI URL |
74 |
Wang X, McConkey B G, VandenBygaart A J , et al. 2016. Grazing improves C and N cycling in the Northern Great Plains: A meta-analysis. Scientific Reports, 6:33190. DOI: 10.1038/srep33190.
DOI URL |
75 | Wang Y S, Shiyomi M, Tsuiki M , et al. 2002. Spatial heterogeneity of vegetation under different grazing intensities in the Northwest Heilongjiang Steppe of China. Agriculture, Ecosystems & Environment, 90(3):217-229. |
76 |
Watt T A, Gibson C W D . 1988. The effects of sheep grazing on seedling establishment and survival in grassland. Vegetatio, 78(1-2):91-98.
DOI URL |
77 |
Yan L, Zhou G S, Zhang F . 2013. Effects of different grazing intensities on grassland production in China: A meta-analysis. Plos One, 8(12):e81466. DOI: 10.1371/journal.pone.0081466.
DOI URL |
78 | Yang L H . 2015. Developing a multicollaborative governance system: A meta-analysis for the Inner Mongolia grassland region. New York, USA: Palgrave Macmillan US. |
79 |
Zhang Y F, Liang W T, Liao Z L , et al. 2019. Effects of climate change on lake area and vegetation cover over the past 55 years in Northeast Inner Mongolia grassland, China. Theoretical and Applied Climatology, 138(1-2):13-25.
DOI URL |
80 |
Zhu Y J, Delgado-Baquerizo M, Shan D , et al. 2020. Diversity-productivity relationships vary in response to increasing land-use intensity. Plant and Soil, 450(1-2):1-10.
DOI URL |
[1] | SONG Minghua, LI Meng, HUO Jiajuan, WU Liang, ZHANG Xianzhou. Multifunctionality and Thresholds of Alpine Grassland on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 263-271. |
[2] | DU Wei, LI Yue, HE Pei, ZHANG Jiaqi, JING Haichao, NIE Cheng, LIU Yinghui. Nitrogen Addition Decreases Soil Respiration without Changing the Temperature Sensitivity in a Semiarid Grassland [J]. Journal of Resources and Ecology, 2020, 11(2): 129-139. |
[3] | LIU Xingren, ZHANG Leiming, ZHANG Caihong, REN Jianqiang, LI Shenggong. Effects of Simulated NH4+ Deposition on CO2 Fluxes in the Hulun Buir Meadow Steppe of Inner Mongolia, China [J]. Journal of Resources and Ecology, 2015, 6(3): 129-138. |
[4] | HAN Peng, HUANG Heqing, ZHEN Lin, LI Fen. The Effects of Eco-Compensation in the Farming-Pastoral Transitional Zone of Inner Mongolia, China [J]. Journal of Resources and Ecology, 2011, 2(2): 141-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||