Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (3): 305-318.DOI: 10.5814/j.issn.1674-764x.2021.03.001
• Forest and Grassland Ecosystem • Next Articles
ZHAO Xuanlan1,2, WANG Junbang1,*(), YE Hui3, MUHAMMAD Amir1,2, WANG Shaoqiang1
Received:
2020-08-02
Accepted:
2020-10-20
Online:
2021-05-30
Published:
2021-07-30
Contact:
WANG Junbang
About author:
ZHAO Xuanlan, E-mail: zhaoxl.17s@igsnrr.ac.cn
Supported by:
ZHAO Xuanlan, WANG Junbang, YE Hui, MUHAMMAD Amir, WANG Shaoqiang. The Bowen Ratio of an Alpine Grassland in Three-River Headwaters, Qinghai-Tibet Plateau, from 2001 to 2018[J]. Journal of Resources and Ecology, 2021, 12(3): 305-318.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.03.001
Fig. 2 Interannual changes of the annual total precipitation (PAT), the annual mean temperature (TAM) and NDVI (NAM) of the whole region (TRH) and the three sub-basins of Yellow River (YLR), Yangtze River (YTR) and Lancang River (LCR) in the Three-River Headwaters, Qinghai, China, from 2000 to 2018.
Fig. 3 The evapotranspiration (ETMOD16) products of MODIS (MOD16A2) were validated against the observations (ETOBS) through the linear regression analysis (a, c) and the seasonal change comparisons (b, d) on the alpine grasslands at Haibei Station (a, b) and Dangxiong Station (c, d) on the Qinghai-Tibet Plateau, China.
Fig. 4 Distribution patterns of multi-year averages of Bowen ratio (a), Latent heat (b), Net Radiation (c), and Sensible Heat (d) of the Three-River Headwaters from 2001 to 2018.
Fig. 6 Spatial pattern of the inter-annual trend of the Bowen ratio (a) and its significant level (b) on the pixel scale for the Three-River Headwaters from 2001 to 2018
Area | bP | bT | bH | bN | bA | R2 | P-value |
---|---|---|---|---|---|---|---|
Yellow River | -0.01 | -0.55 | -0.04 | -0.31 | -0.09 | 0.57 | 0.10 |
Yangtze River | -0.15 | -0.37 | -0.19 | -0.23 | 0.02 | 0.48 | 0.19 |
Lancang River | 0.02 | -0.43 | -0.26 | -0.22 | 0.03 | 0.46 | 0.23 |
Whole region | -0.08 | -0.43 | -0.14 | -0.27 | -0.05 | 0.51 | 0.16 |
Table 1 Multiple linear normalized regression coefficients for the three sub-basins in the Three-River Headwaters and the whole region
Area | bP | bT | bH | bN | bA | R2 | P-value |
---|---|---|---|---|---|---|---|
Yellow River | -0.01 | -0.55 | -0.04 | -0.31 | -0.09 | 0.57 | 0.10 |
Yangtze River | -0.15 | -0.37 | -0.19 | -0.23 | 0.02 | 0.48 | 0.19 |
Lancang River | 0.02 | -0.43 | -0.26 | -0.22 | 0.03 | 0.46 | 0.23 |
Whole region | -0.08 | -0.43 | -0.14 | -0.27 | -0.05 | 0.51 | 0.16 |
Fig. 7 The trends of Bowen ratio attributed to climate (PAT, TAM and RHAM), vegetation greenness (NAM) and AAM through the multiple linear regression with its multiple correlation coefficient (a), significance level (b), and the regression coefficients multiplied by the trends of the dependent variables (c,d).
Fig. 8 The standard regression coefficients (a) and their contributions (b) on the Bowen ratio from the annual mean temperature (TAM), annual total precipitation (PAT), annual mean humidity (RHAM), annual mean albedo (AAM) and annual mean normalized difference vegetation index (NAM) in the Three-River Headwaters in the period from 2001 to 2018.
Region | Area (%) | Bowen trend | TAM trend | PAT trend | RHAM trend | AAM trend | NAM trend | Bowen = bT + bP + bR + bA + bN | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bT | bP | bR | bA | bN | R2 | ||||||||
TRH | 86 | ‒0.0255 | 0.093(<0.001) | 3.88(0.13) | ‒0.007(0.43) | ‒0.001(0.07) | 0.00047(0.20) | ‒0.3417 | ‒0.0005 | ‒0.2525 | ‒1.1175 | ‒9.4901 | 0.5038 |
YLR | 25 | ‒0.0339 | 0.109(<0.001) | 4.71(0.09) | ‒0.002(0.87) | ‒0.001(0.16) | 0.00059(0.30) | ‒0.3877 | ‒0.00004 | ‒0.0372 | ‒1.5741 | ‒7.8781 | 0.5629 |
YTR | 31 | ‒0.0184 | 0.092(<0.001) | 2.40(0.38) | ‒0.012(0.22) | ‒0.001(0.04) | 0.00031(0.29) | ‒0.3004 | ‒0.0010 | ‒0.3456 | 0.2343 | ‒9.0489 | 0.4715 |
LCR | 4 | ‒0.0204 | 0.089(<0.001) | 1.79(0.62) | ‒0.026(0.04) | ‒0.001(0.31) | 0.00052(0.33) | ‒0.3851 | 0.0002 | ‒0.3506 | 0.7142 | ‒6.4999 | 0.4448 |
Table 2 The 2001-2018 interannual trends of Bowen ratio and related climate variables in the Three-River Headwaters
Region | Area (%) | Bowen trend | TAM trend | PAT trend | RHAM trend | AAM trend | NAM trend | Bowen = bT + bP + bR + bA + bN | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bT | bP | bR | bA | bN | R2 | ||||||||
TRH | 86 | ‒0.0255 | 0.093(<0.001) | 3.88(0.13) | ‒0.007(0.43) | ‒0.001(0.07) | 0.00047(0.20) | ‒0.3417 | ‒0.0005 | ‒0.2525 | ‒1.1175 | ‒9.4901 | 0.5038 |
YLR | 25 | ‒0.0339 | 0.109(<0.001) | 4.71(0.09) | ‒0.002(0.87) | ‒0.001(0.16) | 0.00059(0.30) | ‒0.3877 | ‒0.00004 | ‒0.0372 | ‒1.5741 | ‒7.8781 | 0.5629 |
YTR | 31 | ‒0.0184 | 0.092(<0.001) | 2.40(0.38) | ‒0.012(0.22) | ‒0.001(0.04) | 0.00031(0.29) | ‒0.3004 | ‒0.0010 | ‒0.3456 | 0.2343 | ‒9.0489 | 0.4715 |
LCR | 4 | ‒0.0204 | 0.089(<0.001) | 1.79(0.62) | ‒0.026(0.04) | ‒0.001(0.31) | 0.00052(0.33) | ‒0.3851 | 0.0002 | ‒0.3506 | 0.7142 | ‒6.4999 | 0.4448 |
Fig. 9 Effects of different factors on the interannual variation of the Bowen ratio in the Three-River Headwaters: (a) PAT, (b) TAM, (c) RHAM, (d) AAM, and (e) NAM.
Assessment index | Absolute goodness-of-fit indices | Comparative fit index | Information criteria index | ||||||
---|---|---|---|---|---|---|---|---|---|
Chi-sq | df | P value | RMSEA | SRMR | RMR | GFI | CFI | AIC | |
Optimal value | P > 0.05 | ‒ | <0.05 | <0.05 | <0.08 | <0.08 | >0.90 | >0.90 | The smaller, the better |
Practical value | 0.000 | 0.000 | NA | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | ‒527.85 |
Table 3 Fitness test results of SEM
Assessment index | Absolute goodness-of-fit indices | Comparative fit index | Information criteria index | ||||||
---|---|---|---|---|---|---|---|---|---|
Chi-sq | df | P value | RMSEA | SRMR | RMR | GFI | CFI | AIC | |
Optimal value | P > 0.05 | ‒ | <0.05 | <0.05 | <0.08 | <0.08 | >0.90 | >0.90 | The smaller, the better |
Practical value | 0.000 | 0.000 | NA | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | ‒527.85 |
Fig. 10 The correlation matrix (a) and the structural equation model (b) for the variables of annual total precipitation (PAT), the annual mean temperature (TAM), annual mean relative humidity (RHAM), and the vegetation factors of the annual mean Albedo (AAM) and annual mean normalized difference vegetation index (NAM), and the Bowen ratio (β). Note: In subplot (b), the width of a line indicates the correlation and the green and red colors indicate a positive and a negative effect, respectively. The labeled values are the normalized path coefficients.
Fig. 11 The annual mean albedo was significantly correlated with the annual mean NDVI in the Three-River Headwaters, Qinghai Province, in the period from 2001 to 2018.
1 |
Bastiaanssen W G M . 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2):87-100.
DOI URL |
2 |
Betts R A . 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408(6809):187-190.
PMID |
3 |
Bonan G B . 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882):1444-1449.
DOI URL |
4 | Bonan G B. 2017. Ecoclimatology concepts and applications (2nd ed.) . Beijing, China: Meteorological Press. |
5 |
Bowen I S . 1926. The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27:779-787.
DOI URL |
6 | Cao M K, Li K R . 2000. Perspective on terrestrial ecosystem-climate interaction. Advance in Earth Sciences, 15(4):446-452. (in Chinese) |
7 |
Cui M Y, Wang J B, Wang S Q , et al. 2019. Temporal and spatial distribution of evapotranspiration and its influencing factors on Qinghai-Tibet Plateau from 1982 to 2014. Journal of Resources and Ecology, 10(2):213-224.
DOI URL |
8 |
Dugas W A, Fritschen L J, Gay L W , et al. 1991. Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agricultural and Forest Meteorology, 56(1-2):1-20.
DOI URL |
9 |
Feddema J J, Oleson K W, Bonan G B , et al. 2005. The importance of land-cover change in simulating future climates. Science, 310(5754):1674-1678.
DOI URL |
10 | Ge J, Yu Y, Li Z C , et al. 2016. Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau. Plateau Meteorology, 35(3):608-620. (in Chinese) |
11 | Geli H M, Taghvaeian S, Neale C M , et al. 2010. Estimation of evapotraspiration of tamarisk using energy balance models with high resolution airborne imagery and LIDAR data. San Francisco, USA: AGU Fall Meeting Abstracts. |
12 |
Hao X C, Zhang Q, Yang Z S , et al. 2016. A new method for drought monitoring based on land surface energy balance and its preliminary application to the Hedong region of Gansu Province. Chinese Journal of Geophysics, 59(5):488-503.
DOI URL |
13 | Hua K T, Cheng Z J . 1999. Application and analytical strategies of structural equation modelling. Exploration of Psychology, 19(1):54-59. (in Chinese) |
14 | Huang B R, Wang Y, Su L Y , et al. 2018. Pilot programs for national park system in China: Progress, problems and recommendations. Bulletin of Chinese Academy of Sciences, 33:76-85. (in Chinese) |
15 | Hutchinson M F. 1991. The application of thin plate splines to continent wide data assimilation, Data Assimilation Systems. In: Jasper J D (ed.). Data assimilation systems. Melboure, Australia: BMRC Research Report. |
16 | Hutchinson M F . 1998a. Interpolation of rainfall data with Thin Plate Smoothing Splines. Part I: Two dimensional smoothing of data with short range correlation. Journal of Geographic Information and Decision Analysis, 2:153-167. |
17 | Hutchinson M F . 1998b. Interpolation of rainfall data with Thin Plate Smoothing Splines. Part II: Analysis of topographic dependence. Journal of Geographic Information and Decision Analysis, 2:168-185. |
18 |
Jönsson P, Eklundh L . 2004. TIMESAT—A program for analyzing time- series of satellite sensor data. Computers & Geosciences, 30(8):833-845.
DOI URL |
19 | Li X B . 1996. Core areas of global environmental change research: International trends in land use/land cover change. Acta Geographica Sinica, 51(6):553-558. (in Chinese) |
20 | Li Z Q, Yu G R, Wen X F , et al. 2004. Evaluation of the closed state of the energy balance of China FLUX. Science in China (Serires D), 34(S2):46-56. (in Chinese) |
21 |
Liu C C, Liu G R, Chen W J , et al. 2003. Modified Bowen ratio method in near-sea-surface air temperature estimation by using satellite data. IEEE Transactions on Geoscience and Remote Sensing, 41(5):1025-1033.
DOI URL |
22 | Liu J Y, Xu X L, Shao Q Q . 2008. The spatial and temporal characteristics of grassland degradation in the Three-River Headwaters region in Qinghai Province. Acta Geographica Sinica, 63(4):364-376. (in Chinese) |
23 |
Liu N F, Liu Q, Wang L Z , et al. 2013a. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrology and Earth System Sciences, 17(6):2121-2129.
DOI URL |
24 |
Liu Q, Wang L Z, Qu Y , et al. 2013b. Preliminary evaluation of the long-term GLASS albedo product. International Journal of Digital Earth, 6(S1):69-95.
DOI URL |
25 |
McDonald R P, Ho M H R . 2002. Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1):64-82.
DOI URL |
26 | Mei Q . 2000. Three-River Headwaters: A great leap for China’s ecological protection cause. Forestry of China, ( 9):4-5. (in Chinese) |
27 | Monteith J L, Unsworth M H. 2013. Transient heat balance (Chapter 15). In: Jeanne L, Lori A, André A C (eds.). Principles of environmental physics (4th ed.). Boston, USA: Academic Press, 273-287. |
28 |
Mu Q Z, Heinsch F A, Zhao M , et al. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4):519-536.
DOI URL |
29 |
Mu Q Z, Zhao M, Running S W . 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8):1781-1800.
DOI URL |
30 |
Pielke R A, Marland G, Betts R A , et al. 2002. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society (Series A), 360(1797):1705-1719.
DOI URL |
31 |
Pitman A J . 2003. The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23(5):479-510.
DOI URL |
32 |
Qu Y, Liu Q, Liang S , et al. 2014. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 52(2):907-919.
DOI URL |
33 | Rosseel Y . 2012. Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2):1-36. |
34 | Shao Q Q, Fan J W. 2012. Comprehensive monitoring and assessment of ecosystems in Three-Rivers Headwaters. Beijing, China: Science Press. (in Chinese) |
35 | Shao Q Q, Fan J W, Liu J Y , et al. 2017. Target-based assessment on effects of first-stage ecological conservation and restoration project in Three-river Source Region, China and policy recommendations. Bulletin of Chinese Academy of Sciences, 32:35-44. (in Chinese) |
36 | Shao Q Q, Liu J Y, Huang L , et al. 2013. Integrated assessment on the effectiveness of ecological conservation in Sanjiangyuan National Nature Reserve. Geographical Research, 32(9):1645-1656. (in Chinese) |
37 |
Shipley B . 2000. A new inferential test for path models based on directed acyclic graphs. Structural Equation Modeling: A Multidisciplinary Journal, 7(2):206-218.
DOI URL |
38 |
Tang Y K, Wen X F, Sun X M , et al. 2014. Interannual variation of the Bowen ratio in a subtropical coniferous plantation in southeast China, 2003-2012. Plos One, 9(2):e88267. DOI: 10.1371/journal.pone.0088267.
DOI URL |
39 | Tian J, Zhang R H, Sun X M , et al. 2006. Study on the correction model of the influence of horizontal advection flow observation based on remote sensing information. Science in China (Series D), ( 1):255-262. (in Chinese) |
40 | Turner B L, Skole D, Sanderson S , et al. 1995. Land-use and land-cover change: Science/research plan. Stockholm, Sweden: International Geosphere-Biosphere Programme. |
41 | Wang G X, Shen Y P, Qian J , et al. 2003. Study on the influence of vegetation changeon soil moisture cycle in alpine meadow. Journal of Glaciology and Geocryology, 25(6):653-659. (in Chinese) |
42 | Wang J B . 2007. Modeling carbon fluxes of terrestrial ecosystem on regional scale through coupling a remote sensing model with an ecosystem process model. Diss., Beijing, China: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. (in Chinese) |
43 | Wang J B, Wang J W, Ye H , et al. 2017. An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000-2012). Science Data Bank, 2:73-80. (in Chinese) |
44 | Wang L M, Lee X, Schultz N , et al. 2018. Response of surface temperature to afforestation in the Kubuqi Desert, Inner Mongolia. Journal of Geophysical Research: Atmospheres, 123(2):948-964. |
45 |
Wang S Q, Wang J B, Zhang L M , et al. 2019. A National Key R&D Program: Technologies and guidelines for monitoring ecological quality of terrestrial ecosystems in China. Journal of Resources and Ecology, 10(2):105-111.
DOI URL |
46 |
Wang Z, Wang J B . 2019. Changes of soil erosion and possible impacts from ecosystem recovery in the Three-River Headwaters region, Qinghai, China from 2000 to 2015. Journal of Resources and Ecology, 10(5):461-471.
DOI URL |
47 |
Yan H, Wang S Q, Billesbach D , et al. 2012. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model. Remote Sensing of Environment, 124:581-595.
DOI URL |
48 |
Yang Y H, Wang J B, Liu P , et al. 2019. Climatic changes dominant interannual trend in net primary productivity of alpine vulnerable ecosystems. Journal of Resources and Ecology, 10(4):379-388.
DOI URL |
49 | Yao Y H, Zhang B P . 2015. The spatial pattern of monthly air temperature of the Tibetan Plateau and its implications for the geo-ecology pattern of the Plateau. Geographical Research, 34(11):2084-2094. (in Chinese) |
50 |
Ye H, Wang J B, Huang M , et al. 2012. Spatial pattern of vegetation precipitation use efficiency and its response to precipitation and temperature on the Qinghai-Xizang Plateau of China. Chinese Journal of Plant Ecology, 36(12):1237-1247. (in Chinese)
DOI URL |
51 |
Yu G R, Wen X F, Sun X M , et al. 2006. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 137:125-137.
DOI URL |
52 |
Yu G R, Zhang L M, Sun X M , et al. 2008. Environmental controls over carbon exchange of three forest ecosystems in eastern China. Global Change Biology, 14(11):2555-2571.
DOI URL |
53 | Yu G R, Chen Z, Piao S L , et al. 2014. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the USA, 1111(13):4910-4915. |
54 | Yu H Y, Xu J C . 2009. Effects of climate change on vegetations on Qinghai-Tibet Plateau: A review. Chinese Journal of Ecology, 28(4):747-754. (in Chinese) |
55 | Zhang X, Liu X Q, Zhang L F , et al. 2017. Energy balance of an artificial grassland in the Three-River Source Region of the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 37(15):4973-4983. (in Chinese) |
56 | Zhang Z S, Zhao A G, Dong Z B . 2006. Measurement of ecosystem surface flux: Introduction of multi-channel Bowen ratio measuring instrument. Journal of Desert Research, 26(3):473-477. (in Chinese) |
57 |
Zhao G S, Dong J W, Cui Y P , et al. 2019. Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-Tianjin- Hebei region, China. Climate Dynamics, 52(1-2):1231-1245.
DOI URL |
58 | Zhao S X, Zhang Y S, Zhao X Q , et al. 2008. Research on evapotranspiration and its impact factors on grassland in the northern slopes of Qilianshan Mountains. Journal of Northwest A & F University (Natural Science Edition), ( 1):109-115. (in Chinese) |
59 |
Zhao W, Li A N . 2015. A review on land surface processes modelling over complex terrain. Advances in Meteorology, 2015: 607181. DOI: 10.1155/60.2015/607181.
DOI |
61 |
Zhu Z C, Bi J, Pan Y Z , et al. 2013. Global data sets of vegetation Leaf Area Index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sensing, 5(2): 927‒948.
DOI URL |
[1] | SONG Minghua, LI Meng, HUO Jiajuan, WU Liang, ZHANG Xianzhou. Multifunctionality and Thresholds of Alpine Grassland on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 263-271. |
[2] | CAO Yanan, ZHANG Xianzhou, NIU Ben, HE Yongtao. Comparison of Methods for Evaluating the Forage-livestock Balance of Alpine Grasslands on the Northern Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 272-282. |
[3] | FENG Yunfei, DI Yingwei, ZHANG Jing, ZHANG Xianzhou, SHI Peili, Niu Ben. Impact of Grazing Exclusion on the Surface Heat Balance in North Tibet [J]. Journal of Resources and Ecology, 2020, 11(3): 283-289. |
[4] | XIANG Ling, GAO Xiang, PENG Yuhui, LIANG Jie. Coupling the Occurrence of Correlative Plant Species to Predict the Habitat Suitability for Lesser White-fronted Goose (Anser erythropus) under Climate Change: A Case Study in the Middle and Lower Reaches of the Yangtze River [J]. Journal of Resources and Ecology, 2020, 11(2): 140-149. |
[5] | LI Ge, WANG Juanle, WANG Yanjie, WEI Haishuo. Estimation of Grassland Production in Central and Eastern Mongolia from 2006 to 2015 via Remote Sensing [J]. Journal of Resources and Ecology, 2019, 10(6): 676-684. |
[6] | YANG Yihan,WANG Junbang,LIU Peng,LU Guangxin,LI Yingnian. Climatic Changes Dominant Interannual Trend in Net Primary Productivity of Alpine Vulnerable Ecosystems [J]. Journal of Resources and Ecology, 2019, 10(4): 379-388. |
[7] | CUI Mingyue,WANG Junbang,WANG Shaoqiang,YAN Hao,LI Yingnian. Temporal and Spatial Distribution of Evapotranspiration and Its Influencing Factors on Qinghai-Tibet Plateau from 1982 to 2014 [J]. Journal of Resources and Ecology, 2019, 10(2): 213-224. |
[8] | TIAN Li, ZHANG Yangjian, Claus HOLZAPFEL, HUANG Ke, CHEN Ning, TAO Jian, ZHU Juntao. Vegetation Pattern in Northern Tibet in Relation to Environmental and Geo-spatial Factors [J]. Journal of Resources and Ecology, 2018, 9(5): 526-537. |
[9] | FU Gang, SUN Wei, LI Shaowei, ZHANG Jing, YU Chengqun, SHEN Zhenxi. Modeling Aboveground Biomass Using MODIS Images and Climatic Data in Grasslands on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2017, 8(1): 42-49. |
[10] | WANG Juanle, SU Ping, Elena A. Grigorieva. Land Cover Change Characteristics of North-South Transect in Northeast Asia from 2001 to 2012 [J]. Journal of Resources and Ecology, 2016, 7(1): 36-43. |
[11] | FENG Zhiming, YANG Ling, YANG Yanzhao. Temporal and Spatial Distribution Patterns of Grain Crops in the West Liaohe River Basin [J]. Journal of Resources and Ecology, 2014, 5(3): 244-252. |
[12] | FAN Na, XIE Gaodi, LI Wenhua, ZHANG Yajing, ZHANG Changshun, LI Na. Mapping Air Temperature in the Lancang River Basin Using the Reconstructed MODIS LST Data [J]. Journal of Resources and Ecology, 2014, 5(3): 253-262. |
[13] | ZHAO Yuping, ZHANG Xianzhou, SHI Peili, WANG Jingsheng, WU Jianshuang. Impact of Drought Stress on Net CO2 Exchange above an Alpine Grassland Ecosystem in the Central Tibetan Plateau [J]. Journal of Resources and Ecology, 2013, 4(4): 327-336. |
[14] | WU Jianshuan, ZHANG Xianzhou, SHEN Zhenxi, SHI Peili, YU Chengqun, SONG Minghua, LI Xiaojia. Species Richness and Diversity of Alpine Grasslands on the Northern Tibetan Plateau:Effects of Grazing Exclusion and Growing Season Precipitation [J]. Journal of Resources and Ecology, 2012, 3(3): 236-242. |
[15] | SUN Liang, SUN Rui, LI Xiaowen, CHEN Huailiang, ZHANG Xuefen. Estimating Evapotranspiration Using Improved Fractional Vegetation Cover and Land Surface Temperature Space [J]. Journal of Resources and Ecology, 2011, 2(3): 225-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||