Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (2): 225-240.DOI: 10.5814/j.issn.1674-764x.2021.02.009
• Land Use Change and Land Multifunction Tradeoffs • Previous Articles Next Articles
REN Guoping1,2, LIU Liming3,*(), LI Hongqing4, YIN Gang1,2, ZHAO Xu1,2
Received:
2020-09-26
Accepted:
2020-12-15
Online:
2021-03-30
Published:
2021-05-30
Contact:
LIU Liming
About author:
REN Guoping, E-mail: renguoping82@163.com
Supported by:
REN Guoping, LIU Liming, LI Hongqing, YIN Gang, ZHAO Xu. Spatio-temporal Pattern of Multifunction Tradeoffs and Synergies of the Rural Landscape: Evidence from Qingpu District in Shanghai[J]. Journal of Resources and Ecology, 2021, 12(2): 225-240.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.02.009
Target | Criterion | Indicators | Direction | Weight |
---|---|---|---|---|
PF | APF | X1 Annual value of food supply(yuan) | Positive | 0.065 |
X2 Annual value of cash crop supply (yuan) | Positive | 0.051 | ||
X3 Per capita cultivated land area (ha person-1) | Positive | 0.039 | ||
EDF | X4 Per capita GDP (yuan) | Positive | 0.059 | |
X5 Land urbanization rate (%) | Positive | 0.053 | ||
X6 Contribution of agriculture(%) | Positive | 0.044 | ||
LF | SCF | X7 Population density (person km-2) | Positive | 0.061 |
X8 Area of settlement landscape land (ha) | Positive | 0.063 | ||
X9 Per capita road mileage (km person-1) | Positive | 0.044 | ||
LAF | X10 Demand (person) | Positive | 0.045 | |
X11 Level of demand (yuan person-1) | Positive | 0.053 | ||
X12 Radiation range of landscape aesthetics (km) | Positive | 0.039 | ||
X13 Plaque agglomeration | Positive | 0.041 | ||
X14 Landscape diversity index | Positive | 0.034 | ||
EF | ERF | X15 Vegetation coverage index (%) | Positive | 0.043 |
X16 Water network density index (%) | Positive | 0.056 | ||
X17 Land degradation index | Negative | 0.037 | ||
EMF | X18 Annual fertilizer application (t) | Negative | 0.065 | |
X19 Environmental annual capacity of landscape ecological land (t) | Positive | 0.049 | ||
X20 Industrial waste emissions (t) | Negative | 0.059 |
Table 1 Evaluation index system of landscape functions and weights in Qingpu District
Target | Criterion | Indicators | Direction | Weight |
---|---|---|---|---|
PF | APF | X1 Annual value of food supply(yuan) | Positive | 0.065 |
X2 Annual value of cash crop supply (yuan) | Positive | 0.051 | ||
X3 Per capita cultivated land area (ha person-1) | Positive | 0.039 | ||
EDF | X4 Per capita GDP (yuan) | Positive | 0.059 | |
X5 Land urbanization rate (%) | Positive | 0.053 | ||
X6 Contribution of agriculture(%) | Positive | 0.044 | ||
LF | SCF | X7 Population density (person km-2) | Positive | 0.061 |
X8 Area of settlement landscape land (ha) | Positive | 0.063 | ||
X9 Per capita road mileage (km person-1) | Positive | 0.044 | ||
LAF | X10 Demand (person) | Positive | 0.045 | |
X11 Level of demand (yuan person-1) | Positive | 0.053 | ||
X12 Radiation range of landscape aesthetics (km) | Positive | 0.039 | ||
X13 Plaque agglomeration | Positive | 0.041 | ||
X14 Landscape diversity index | Positive | 0.034 | ||
EF | ERF | X15 Vegetation coverage index (%) | Positive | 0.043 |
X16 Water network density index (%) | Positive | 0.056 | ||
X17 Land degradation index | Negative | 0.037 | ||
EMF | X18 Annual fertilizer application (t) | Negative | 0.065 | |
X19 Environmental annual capacity of landscape ecological land (t) | Positive | 0.049 | ||
X20 Industrial waste emissions (t) | Negative | 0.059 |
Function | 1980 | 1995 | 2007 | 2018 |
---|---|---|---|---|
PF | 0.545 | 0.641 | 0.662 | 0.675 |
LF | 0.527 | 0.546 | 0.587 | 0.593 |
EF | 0.605 | 0.505 | 0.334 | 0.396 |
APF | 0.657 | 0.606 | 0.453 | 0.348 |
EDF | 0.540 | 0.725 | 0.890 | 0.949 |
SCF | 0.426 | 0.549 | 0.649 | 0.707 |
LAF | 0.613 | 0.515 | 0.326 | 0.389 |
ERF | 0.658 | 0.419 | 0.309 | 0.314 |
EMF | 0.569 | 0.349 | 0.256 | 0.311 |
Table 2 Results of multifunctional comprehensive evaluation of the rural landscape in Qingpu District
Function | 1980 | 1995 | 2007 | 2018 |
---|---|---|---|---|
PF | 0.545 | 0.641 | 0.662 | 0.675 |
LF | 0.527 | 0.546 | 0.587 | 0.593 |
EF | 0.605 | 0.505 | 0.334 | 0.396 |
APF | 0.657 | 0.606 | 0.453 | 0.348 |
EDF | 0.540 | 0.725 | 0.890 | 0.949 |
SCF | 0.426 | 0.549 | 0.649 | 0.707 |
LAF | 0.613 | 0.515 | 0.326 | 0.389 |
ERF | 0.658 | 0.419 | 0.309 | 0.314 |
EMF | 0.569 | 0.349 | 0.256 | 0.311 |
Pairs of rural landscape functions | 1980 | 1995 | 2007 | 2018 | ||||
---|---|---|---|---|---|---|---|---|
I value | Z value | I value | Z value | I value | Z value | I value | Z value | |
PF-LF | 0.334 | 6.255 | 0.318 | 5.856 | 0.217 | 8.542 | 0.243 | 9.885 |
PF-EF | 0.159 | 1.995 | -0.102 | 6.523 | -0.293 | 5.575 | -0.185 | 2.688 |
LF-EF | 0.272 | 9.523 | 0.138 | 5.445 | -0.131 | 5.742 | -0.109 | 6.635 |
APF-EDF | -0.559 | -6.859 | -0.455 | -5.778 | -0.382 | -4.524 | -0.314 | -3.524 |
APF-SCF | 0.248 | 7.885 | -0.332 | -0.758 | -0.459 | -0.789 | -0.547 | -0.851 |
APF-LAF | 0.353 | 7.851 | -0.244 | -6.855 | -0.217 | -4.874 | 0.142 | 3.448 |
APF-ERF | -0.142 | 9.985 | -0.311 | -8.667 | -0.564 | -8.228 | -0.337 | 5.668 |
APF-EMF | -0.037 | 2.776 | -0.119 | -6.867 | -0.325 | -5.567 | -0.217 | 2.888 |
EDF-SCF | 0.256 | 7.567 | 0.356 | 9.861 | 0.467 | 10.232 | 0.633 | 11.745 |
EDF-LAF | 0.138 | 2.664 | -0.143 | -3.752 | -0.365 | -4.578 | -0.243 | -8.347 |
EDF-ERF | -0.251 | -6.752 | -0.316 | -7.664 | -0.542 | -9.001 | -0.424 | -5.664 |
EDF-EMF | -0.332 | -3.341 | -0.452 | -4.584 | -0.621 | -6.854 | -0.522 | -7.330 |
SCF-LAF | -0.213 | -0.856 | -0.311 | -5.856 | -0.322 | -0.741 | -0.362 | -1.775 |
SCF-ERF | 0.182 | 2.452 | -0.051 | -5.521 | -0.242 | -7.634 | -0.328 | -6.853 |
SCF-EMF | 0.212 | 1.885 | -0.101 | -5.752 | -0.225 | -8.532 | -0.362 | -9.774 |
LAF-ERF | 0.241 | 2.521 | 0.312 | 8.442 | 0.422 | 12.841 | 0.637 | 18.772 |
LAF-EMF | 0.332 | 5.321 | 0.411 | 8.854 | 0.492 | 5.334 | 0.591 | 10.654 |
ERF-EMF | 0.451 | 6.854 | 0.462 | 2.885 | 0.511 | 13.772 | 0.542 | 9.524 |
Table 3 Global spatial autocorrelation index between rural landscape functions in Qingpu District
Pairs of rural landscape functions | 1980 | 1995 | 2007 | 2018 | ||||
---|---|---|---|---|---|---|---|---|
I value | Z value | I value | Z value | I value | Z value | I value | Z value | |
PF-LF | 0.334 | 6.255 | 0.318 | 5.856 | 0.217 | 8.542 | 0.243 | 9.885 |
PF-EF | 0.159 | 1.995 | -0.102 | 6.523 | -0.293 | 5.575 | -0.185 | 2.688 |
LF-EF | 0.272 | 9.523 | 0.138 | 5.445 | -0.131 | 5.742 | -0.109 | 6.635 |
APF-EDF | -0.559 | -6.859 | -0.455 | -5.778 | -0.382 | -4.524 | -0.314 | -3.524 |
APF-SCF | 0.248 | 7.885 | -0.332 | -0.758 | -0.459 | -0.789 | -0.547 | -0.851 |
APF-LAF | 0.353 | 7.851 | -0.244 | -6.855 | -0.217 | -4.874 | 0.142 | 3.448 |
APF-ERF | -0.142 | 9.985 | -0.311 | -8.667 | -0.564 | -8.228 | -0.337 | 5.668 |
APF-EMF | -0.037 | 2.776 | -0.119 | -6.867 | -0.325 | -5.567 | -0.217 | 2.888 |
EDF-SCF | 0.256 | 7.567 | 0.356 | 9.861 | 0.467 | 10.232 | 0.633 | 11.745 |
EDF-LAF | 0.138 | 2.664 | -0.143 | -3.752 | -0.365 | -4.578 | -0.243 | -8.347 |
EDF-ERF | -0.251 | -6.752 | -0.316 | -7.664 | -0.542 | -9.001 | -0.424 | -5.664 |
EDF-EMF | -0.332 | -3.341 | -0.452 | -4.584 | -0.621 | -6.854 | -0.522 | -7.330 |
SCF-LAF | -0.213 | -0.856 | -0.311 | -5.856 | -0.322 | -0.741 | -0.362 | -1.775 |
SCF-ERF | 0.182 | 2.452 | -0.051 | -5.521 | -0.242 | -7.634 | -0.328 | -6.853 |
SCF-EMF | 0.212 | 1.885 | -0.101 | -5.752 | -0.225 | -8.532 | -0.362 | -9.774 |
LAF-ERF | 0.241 | 2.521 | 0.312 | 8.442 | 0.422 | 12.841 | 0.637 | 18.772 |
LAF-EMF | 0.332 | 5.321 | 0.411 | 8.854 | 0.492 | 5.334 | 0.591 | 10.654 |
ERF-EMF | 0.451 | 6.854 | 0.462 | 2.885 | 0.511 | 13.772 | 0.542 | 9.524 |
1 | Anselin L . 1995. Local indicators of spatial association—LISA. Geographical Analysis, 27(2):93-115. |
2 | Asadolahi Z, Salmanmahiny A, Sakieh Y , et al. 2018. Dynamic trade-off analysis of multiple ecosystem services under land use change scenarios: Towards putting ecosystem services into planning in Iran. Ecological Complexity, 36:250-260. |
3 | Azam K M, Gholam A H, Abdol R S , et al. 2019. Exploring management objectives and ecosystem service trade-offs in a semi-arid rangeland basin in southeast Iran. Ecological Indicators, 98:784-803. |
4 | Bai Y, Wang M, Li H , et al. 2017. Ecosystem service supply and demand: Theory and management application. Acta Ecologica Sinica, 37(17):5846-5852. (in Chinese) |
5 |
Chen G, Meng X M, Tan L , et al. 2014. Comparison and combination of different models for optimal landslide susceptibility zonation. Quarterly Journal of Engineering Geology and Hydrogeology, 47(4):283-306.
DOI URL |
6 |
Deng X Z, Li Z H, Gibson J . 2016. A review on trade-off analysis of ecosystem services for sustainable land-use management. Journal of Geographical Sciences, 26(7):953-968.
DOI URL |
7 | Dong P Y, Zhao H F . 2019. Study on trade-off and synergy relationship of cultivated land multifunction: A case of Qingpu District, Shanghai. Resources and Environment in the Yangtze Basin, 28(2):368-375. (in Chinese) |
8 | Egoh B, Reyers B, Rouget M , et al. 2009. Spatial congruence between biodiversity and ecosystem services in South Africa. Biological Conservation, 142(3):553-562. |
9 | Fan J . 2015. Draft of major function oriented zoning of China. Acta Geographica Sinica, 70(2):186-201. (in Chinese) |
10 | Feng Z, Xu X G, Zhou J , et al. 2016. Land sparing versus sharing framework from ecosystem service perspective. Progress in Geography, 35(9):1100-1108. (in Chinese) |
11 | Firbank L, Bradbury R B, McCracken D I , et al. 2013. Delivering multiple ecosystem services from enclosed farmland in the UK. Agriculture Ecosystems and Environment, 166:65-75. |
12 | Goldstein J H, Caldarone G, Duarte T K , et al. 2012. Integrating ecosystem service tradeoffs into land-use decisions. Proceedings of the National Academy of Science of the USA, 109(19):7565-7570. |
13 |
Green R E, Cornell S J, Scharlemann J P W , et al. 2005. Farming and the fate of wild nature. Science, 307(5709):550-555.
DOI URL PMID |
14 |
Han H Q, Liu Y, Gao H J , et al. 2020. Tradeoffs and synergies between ecosystem services: A comparison of the Karst and non-Karst area. Journal of Mountain Science, 17(5):1221-1234.
DOI URL |
15 | Howe C, Suich H, Vira B , et al. 2014. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergy in the real world. Global Environmental Change, 28:263-275. |
16 | Jia X Q, Fu B J, Feng X M , et al. 2014. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecological Indicators, 43:103-113. |
17 | Langner A, Irauschek F, Perez S , et al. 2017. Value-based ecosystem service trade-offs in multi-objective management in European mountain forests. Ecosystem Services, 26:245-257. |
18 | Li Z H, Deng X Z, Jin G , et al. 2020. Tradeoffs between agricultural production and ecosystem services: A case study in Zhangye, Northwest China. Science of the Total Environment, 707:136032. DOI: 10.1016/j.scitotenv.2019.136032. |
19 | Liu Y, Liu Y S, Guo L Y . 2011. Connotations of rural regional multifunction and its policy implications in China. Human Geography, 26(6):103-106, 132. (in Chinese) |
20 | Mitchell M G E, Bennett E M, Gonzalez A . 2015. Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales. Environmental Research Letters, 10(9):094014. DOI: 10.1088/1748-9326/10/9/094014. |
21 | NBSC(National Bureau of Statistics of China). 1980-2018. China Statistical Yearbook. Beijing, China: Chinese Statistics Press. |
22 | O’Farrell P J, Reyers B, Maitre D C , et al. 2010. Multi-functional landscapes in semi-arid environments: Implications for biodiversity and ecosystem services. Landscape Ecology, 25(8):1231-1246. |
23 | Palmer C, Silber T . 2012. Trade-offs between carbon sequestration and rural incomes in the N’hambita Community Carbon Project, Mozambique. Land Use Policy, 29(1):83-93. |
24 | Pan J H, Li Z . 2017. Analysis on trade-offs and synergies of ecosystem services in arid inland river basin. Transactions of the Chinese Society of Agricultural Engineering, 33(17):280-289. (in Chinese) |
25 | Peng J, Liu Z C, Liu Y X , et al. 2015a. Multifunctionality assessment of urban agriculture in Beijing City, China. Science of the Total Environment, 537:343-351. |
26 | Peng J, Lv H L, Liu Y X , et al. 2015b. International research progress and perspectives on multifunctional landscape. Advances in Earth Science, 30(4):465-476. (in Chinese) |
27 | Qian C Y, Gong J, Zhang J X , et al. 2018. Change and tradeoffs-synergies analysis on watershed ecosystem services: A case study of Bailongjiang Watershed, Gansu. Acta Geographica Sinica, 73(5):868-879. (in Chinese) |
28 | Qian F K, Chi Y R, Lal R . 2020. Spatiotemporal characteristics analysis of multifunctional cultivated land: A case study in Shenyang, Northeast China. Land Degradation & Development, 31(14):1812-1822. |
29 | Qiu J X, Turner M G . 2013. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proceedings of the National Academy of Sciences of the USA, 110(29):12149-12154. |
30 | Reed M S, Hubacek K, Bonn A , et al. 2013. Anticipating and managing future trade-offs and complementarities between ecosystem services. Ecology and Society, 18(1):5-16. |
31 | Ren G P, Liu L M, Sun J , et al. 2018. Multifunction orientation of rural landscape in metropolitan suburbs based on GRA and TOPSIS models. Geographical Research, 37(2):263-280. (in Chinese) |
32 | Schmalz B, Kruse M, Kiesel J , et al. 2016. Water-related ecosystem services in Western Siberian lowland basins—Analysing and mapping spatial and seasonal effects on regulating services based on ecohydrological modelling results. Ecological Indicators, 71:55-65. |
33 | Wang C, Peng Q, Tang N , et al. 2018. Spatio-temporal evolution and the synergy and trade-off relationship of cultivated land multi-function in 2005-2015: A case of Shapingba District, Chongqing City. Scientia Geographica Sinica, 38(4):590-599. (in Chinese) |
34 | Willemen L, Hein L, van Mensvoort M E F, et al. 2010. Space for people, plants, and livestock? Quantifying interactions among multiple landscape functions in a Dutch rural region. Ecological Indicators, 10(1):62-73. |
35 | Wu Y, Tao Y, Yang G S , et al. 2019. Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections. Land Use Policy, 85:419-427. |
36 | Yang G F, Ge Y, Xue H , et al. 2015. Using ecosystem service bundles to detect trade-offs and synergies across urban-rural complexes. Landscape and Urban Planning, 136:110-121. |
37 | Zhang Y N, Long H L, Tu S S , et al. 2019. Spatial identification of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecological Indicators, 107:105550. DOI: 10.1016/j.ecolind.2019.105550. |
38 | Zhang Z Y, Liu Y F, Wang Y H , et al. 2020. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? Journal of Cleaner Production, 257:120454. DOI: 10.1016/j.jclepro.2020.120454. |
39 | Zhu Q Y, Hu W Y, Zhao Z S . 2018. Dynamic analysis on spatial-temporal pattern of trade-offs and synergies of multifunctional cultivated land: Evidence from Hubei Province. Economic Geography, 38(7):143-153. (in Chinese) |
[1] | SHI Jiaying, HE Yafen. Evolution Characteristics of Urban Land Use Efficiency under Environmental Constraints in China [J]. Journal of Resources and Ecology, 2021, 12(2): 143-154. |
[2] | SONG Minghua, LI Meng, HUO Jiajuan, WU Liang, ZHANG Xianzhou. Multifunctionality and Thresholds of Alpine Grassland on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2020, 11(3): 263-271. |
[3] | XIAO Lianlian, ZHONG Linsheng. Quantitative Study on the Evolution of Ecotourism Policy Development in China [J]. Journal of Resources and Ecology, 2017, 8(5): 460-469. |
[4] | LI Lu, ZHANG Yujun. Rural Ecotourism: An Effective Way of Maintaining Indigenous Character in Rapidly Urbanizing Rural Areas: A Case Study of Five Golden Flowers in Chengdu, China [J]. Journal of Resources and Ecology, 2017, 8(5): 485-493. |
[5] | ZHEN Lin, YAN Huimin, HU Yunfeng, XUE Zhichao, XIAO Yu, XIE Gaodi, MA Jianxia, WANG Jijun. Overview of Ecological Restoration Technologies and Evaluation Systems [J]. Journal of Resources and Ecology, 2017, 8(4): 315-324. |
[6] | NING Baoying, MA Jianxia, JIANG Zhide, CHEN Chun, ZHANG Xinli, LU Jingliang. Evolution Characteristics and Development Trends of Sand Barriers [J]. Journal of Resources and Ecology, 2017, 8(4): 398-404. |
[7] | YANG Hui, SHI Changxing. The Fractal Characteristics of Drainage Networks and Erosion Evolution Stages of Ten Kongduis in the Upper Reaches of the Yellow River, China [J]. Journal of Resources and Ecology, 2017, 8(2): 165-173. |
[8] | SUN Xueping, WANG Bin, LIU Moucheng, LIU Weiwei. The Ecosystem Service Function of Shandong Xiajin Yellow River Ancient Mulberry Trees System and Its Effect on Regional Ecosystem [J]. Journal of Resources and Ecology, 2016, 7(3): 223-230. |
[9] | NILES Daniel, ROTH Robin. Conservation of Traditional Agriculture as Living Knowledge Systems, Not Cultural Relics [J]. Journal of Resources and Ecology, 2016, 7(3): 231-236. |
[10] | ZHANG Siyu, BAI Xiaoyong, WANG Shijie, QIN Luoyi, LI Panlong, LUO Guangjie and LI Yue. Spatial Distribution Patterns and the Evolution Process of Carbon Storage in a Typical Karst Canyon Area [J]. Journal of Resources and Ecology, 2015, 6(4): 199-207. |
[11] | QIN Weishan, ZHANG Yifeng. Evolution of Industrial Structure and Evaluation of the Economic Competitiveness of Island Counties in China [J]. Journal of Resources and Ecology, 2014, 5(1): 74-81. |
[12] | LI Wenhua, LIU Moucheng, MIN Qingwen. China’s Ecological Agriculture: Progress and Perspectives [J]. Journal of Resources and Ecology, 2011, 2(1): 1-7. |
[13] | XIE Gao-Di, ZHEN Lin, ZHANG Cai-Xia, DENG Xiang-Zheng, Hannes Jochen KOENIG, Karen TSCHERNING, Katharina HELMING. Assessing the Multifunctionalities of Land Use in China [J]. Journal of Resources and Ecology, 2010, 1(4): 311-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||