Journal of Resources and Ecology ›› 2021, Vol. 12 ›› Issue (1): 11-21.DOI: 10.5814/j.issn.1674-764x.2021.01.002
• Forest Ecosystem • Previous Articles Next Articles
LI Chao1,2(), XU Wenli3, LI Qingkang1, WANG Jingsheng1,*(
)
Received:
2020-05-02
Accepted:
2020-07-08
Online:
2021-01-30
Published:
2021-03-30
Contact:
WANG Jingsheng
About author:
LI Chao, E-mail: Supported by:
LI Chao, XU Wenli, LI Qingkang, WANG Jingsheng. Community Structure and Diversity Distribution Pattern of Sandy Plants in the Middle and Upper Reaches of the Yarlung Zangbo River[J]. Journal of Resources and Ecology, 2021, 12(1): 11-21.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2021.01.002
Association type | Plot number | Altitude range (m) | Main species | Average height (cm) | Average coverage (%) | Frequency | Importance value |
---|---|---|---|---|---|---|---|
Ⅰ Artemisia minor + Stipa purpurea | 1-5 | 5000-4750 | Artemisia minor | 4.2 | 2 | 0.136 | 0.08±0.04 |
Stipa purpurea | 23.5 | 2 | 0.273 | 0.13±0.06 | |||
Potentilla saundersiana | 4.4 | 1 | 0.159 | 0.07±0.03 | |||
Saussurea tibetica | 6.8 | 1 | 0.113 | 0.04±0.02 | |||
Lasiocaryum densiflorum | 5.2 | 1 | 0.113 | 0.04±0.03 | |||
Ⅱ Artemisia wellbyi + Festuca ovina | 6-9 | 4800-4600 | Artemisia wellbyi | 18.7 | 5 | 0.227 | 0.38±0.12 |
Festuca ovina | 6.5 | 4 | 0.159 | 0.29±0.16 | |||
Stipa purpurea | 16.1 | 2 | 0.127 | 0.26±0.13 | |||
Delphinium tangkulaense | 7.8 | 1 | 0.119 | 0.17±0.11 | |||
Ⅲ Potentilla fruticosa + Orinus thoroldii | 14-20 | 4700-4500 | Potentilla fruticosa | 46.1 | 8 | 0.127 | 0.39±0.16 |
Orinus thoroldii | 24.8 | 2 | 0.159 | 0.26±0.13 | |||
Carex moorcroftii | 7.4 | 2 | 0.172 | 0.17±0.11 | |||
Ⅳ Trikeraia hookeri+ Artemisia frigida | 10-13 | 4500-4300 | Trikeraia hookeri | 44.3 | 3 | 0.182 | 0.22±0.07 |
Artemisia frigida | 37.1 | 5 | 0.205 | 0.28±0.14 | |||
Elymus nutans | 36.6 | 2 | 0.168 | 0.14±0.06 | |||
Kobresia tibetica | 8.7 | 5 | 0.263 | 0.09±0.04 | |||
Poa tibetica | 18.7 | 3 | 0.145 | 0.11±0.06 | |||
Anaphalis xylorhiza | 5.4 | 2 | 0.136 | 0.06±0.03 | |||
Ⅴ Kobresia pygmaea | 21-28 | 4300-4000 | Kobresia pygmaea | 5.2 | 22 | 0.205 | 0.46±0.06 |
Potentilla saundersiana | 4.7 | 5 | 0.182 | 0.15±0.07 | |||
Astragalus arnoldii | 7.9 | 6 | 0.159 | 0.12±0.05 | |||
Poa annua | 17.4 | 3 | 0.127 | 0.14±0.04 | |||
Ⅵ Sophora moorcroftiana + Artemisia hedinii | 29-36 | 4200-3700 | Sophora moorcroftiana | 59.7 | 30 | 0.318 | 0.39±0.12 |
Artemisia hedinii | 47.5 | 14 | 0.264 | 0.21±0.08 | |||
Poa tibetica | 24.6 | 2 | 0.145 | 0.05±0.02 | |||
Carex moorcroftii | 13.5 | 5 | 0.172 | 0.07±0.03 | |||
Kobresia tibetica | 6.7 | 8 | 0.263 | 0.08±0.04 | |||
Ⅶ Sophora moorcroftiana + Pennisetum centrasiaticum | 37-44 | 4100-3700 | Sophora moorcroftiana | 64.3 | 34 | 0.323 | 0.42±0.11 |
Cotoneaster multiflorus | 56.4 | 27 | 0.264 | 0.27±0.08 | |||
Artemisia wellbyi | 35.7 | 12 | 0.157 | 0.11±0.04 | |||
Pennisetum centrasiaticum | 39.3 | 4 | 0.124 | 0.08±0.03 |
Table 1 Main dominant species in the plots
Association type | Plot number | Altitude range (m) | Main species | Average height (cm) | Average coverage (%) | Frequency | Importance value |
---|---|---|---|---|---|---|---|
Ⅰ Artemisia minor + Stipa purpurea | 1-5 | 5000-4750 | Artemisia minor | 4.2 | 2 | 0.136 | 0.08±0.04 |
Stipa purpurea | 23.5 | 2 | 0.273 | 0.13±0.06 | |||
Potentilla saundersiana | 4.4 | 1 | 0.159 | 0.07±0.03 | |||
Saussurea tibetica | 6.8 | 1 | 0.113 | 0.04±0.02 | |||
Lasiocaryum densiflorum | 5.2 | 1 | 0.113 | 0.04±0.03 | |||
Ⅱ Artemisia wellbyi + Festuca ovina | 6-9 | 4800-4600 | Artemisia wellbyi | 18.7 | 5 | 0.227 | 0.38±0.12 |
Festuca ovina | 6.5 | 4 | 0.159 | 0.29±0.16 | |||
Stipa purpurea | 16.1 | 2 | 0.127 | 0.26±0.13 | |||
Delphinium tangkulaense | 7.8 | 1 | 0.119 | 0.17±0.11 | |||
Ⅲ Potentilla fruticosa + Orinus thoroldii | 14-20 | 4700-4500 | Potentilla fruticosa | 46.1 | 8 | 0.127 | 0.39±0.16 |
Orinus thoroldii | 24.8 | 2 | 0.159 | 0.26±0.13 | |||
Carex moorcroftii | 7.4 | 2 | 0.172 | 0.17±0.11 | |||
Ⅳ Trikeraia hookeri+ Artemisia frigida | 10-13 | 4500-4300 | Trikeraia hookeri | 44.3 | 3 | 0.182 | 0.22±0.07 |
Artemisia frigida | 37.1 | 5 | 0.205 | 0.28±0.14 | |||
Elymus nutans | 36.6 | 2 | 0.168 | 0.14±0.06 | |||
Kobresia tibetica | 8.7 | 5 | 0.263 | 0.09±0.04 | |||
Poa tibetica | 18.7 | 3 | 0.145 | 0.11±0.06 | |||
Anaphalis xylorhiza | 5.4 | 2 | 0.136 | 0.06±0.03 | |||
Ⅴ Kobresia pygmaea | 21-28 | 4300-4000 | Kobresia pygmaea | 5.2 | 22 | 0.205 | 0.46±0.06 |
Potentilla saundersiana | 4.7 | 5 | 0.182 | 0.15±0.07 | |||
Astragalus arnoldii | 7.9 | 6 | 0.159 | 0.12±0.05 | |||
Poa annua | 17.4 | 3 | 0.127 | 0.14±0.04 | |||
Ⅵ Sophora moorcroftiana + Artemisia hedinii | 29-36 | 4200-3700 | Sophora moorcroftiana | 59.7 | 30 | 0.318 | 0.39±0.12 |
Artemisia hedinii | 47.5 | 14 | 0.264 | 0.21±0.08 | |||
Poa tibetica | 24.6 | 2 | 0.145 | 0.05±0.02 | |||
Carex moorcroftii | 13.5 | 5 | 0.172 | 0.07±0.03 | |||
Kobresia tibetica | 6.7 | 8 | 0.263 | 0.08±0.04 | |||
Ⅶ Sophora moorcroftiana + Pennisetum centrasiaticum | 37-44 | 4100-3700 | Sophora moorcroftiana | 64.3 | 34 | 0.323 | 0.42±0.11 |
Cotoneaster multiflorus | 56.4 | 27 | 0.264 | 0.27±0.08 | |||
Artemisia wellbyi | 35.7 | 12 | 0.157 | 0.11±0.04 | |||
Pennisetum centrasiaticum | 39.3 | 4 | 0.124 | 0.08±0.03 |
Fig. 7 Relative influence of water, energy and habitat heterogeneity on species diversity Note: a: the independent influence of water factors; b: the independent influence of energy factors; c: the independent influence of habitat heterogeneity; d: the joint influence of water and energy factors; e: the joint influence of water and habitat heterogeneity factors; f: the joint influence of energy and habitat heterogeneity factors; g: the combined influence of all three groups of factors; unexplained, variation that is not explained by these specific factors.
Index | Model | Range | Nugget (C0) | Still (C0+C1) | C0/(C0+C1) | Rss | R2 | |
---|---|---|---|---|---|---|---|---|
D | Spheroid | 0.482 | 0.032 | 0.044 | 0.727 | 1.34×10-3 | 0.694 | |
H | Spheroid | 0.335 | 0.137 | 0.273 | 0.502 | 1.79×10-3 | 0.753 |
Table 2 Parameters and test values of thesemi-variogram model for species diversity indexes
Index | Model | Range | Nugget (C0) | Still (C0+C1) | C0/(C0+C1) | Rss | R2 | |
---|---|---|---|---|---|---|---|---|
D | Spheroid | 0.482 | 0.032 | 0.044 | 0.727 | 1.34×10-3 | 0.694 | |
H | Spheroid | 0.335 | 0.137 | 0.273 | 0.502 | 1.79×10-3 | 0.753 |
[1] | Bao X T, Ding L B, Yao S C, et al. 2019. Quantitative classification and ranking of plant communities in the Lhasa River Basin. Journal of Ecology, 39(3):779-786. (in Chinese) |
[2] |
Burke A. 2001. Classification and ordination of plant communities of the Naukluft Mountains, Namibia. Journal of Vegetation Science, 12(1):53-60.
DOI URL |
[3] |
Currie D J, Paquin V. 1987. Large-scale biogeographical patterns of species richness of trees. Nature, 329(6137):326-327.
DOI URL |
[4] |
Dixon P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6):927-930.
DOI URL |
[5] | Duan M J, Gao Q Z, Guo Y Q, et al. 2011. Distribution pattern of plant community species diversity along the altitude gradient in alpine grasslands in northern Tibet. Pratacultural Science, 28(10):1845-1850. (in Chinese) |
[6] | Feng J M, Hu X K, 2019. Effects of environmental factors on the distribution pattern of plant diversity in northwestern Yunnan. Journal of Xinyang Normal University (Natural Science Edition), 32(1):62-68. (in Chinese) |
[7] |
Francis A P, Currie D J. 2003. A globally consistent richness-climate relationship for angiosperms. American Naturalist, 161(4):523-536.
DOI URL |
[8] | Ge S, Ni M J, Hong J C, et al. 2013. Characteristics of temperature changes in the Yarlung Zangbo River Basin in the past 50 years. Tibet Science and Technology, (1): 46-50, 58. (in Chinese) |
[9] | He P, Guo K, He P, et al. 2005. Vegetation in the source area of the Yarlung Zangbo River and its geographical distribution characteristics. Journal of Mountain Science, 23(3):267-273. (in Chinese) |
[10] | Jia J W, Lü S Y, Wang Z X. 2008. Analysis of water resources characteristics of the Yarlung Zangbo River Basin. People’s Yangtze River, 39(17):71-72. (in Chinese) |
[11] |
Kerr, J T, Packer L. 1997. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385:252-254.
DOI URL |
[12] | La Q, Zhaxi C R, Zhu W D, et al. 2014. The distribution pattern of plant species richness on the banks of the Yarlung Zangbo River and its environmental interpretation. Biodiversity, 22(3):337-347. (in Chinese) |
[13] |
Levine J M, HilleRisLambers J. 2009. The importance of niches for the maintenance of species diversity. Nature, 461(7261):254-257.
DOI URL PMID |
[14] | Li H D, Shen W S, Fang Y, et al. 2011. Spot pattern analysis of several major sandy plant species in the riparian zone of the Yarlung Zangbo River. Journal of Plant Ecology, 35(8):834-843. (in Chinese) |
[15] | Li H T, He J S, Ni Z C, et al. 2004. TWINSPAN classification and species diversity of grassland plant communities in Lazi County, Tibet. Journal of Jiangxi Agricultural University, 26(1):31-36. (in Chinese) |
[16] | Li H, Wen X M, Yu S L. 2013. Investigation and evaluation of plant germplasm resources in the Qiangtang Plateau and the Upper Yarlung Zangbo River. Journal of Plant Classification and Resources, 35(3):327-334. (in Chinese) |
[17] | Liao C R, Lü G P, Wang T, et al. 2018. Vegetation restoration and species diversity changes in the tidal flats of the tidal flat. Journal of Nanjing Forestry University (Natural Science Edition), 42(2):89-96. (in Chinese) |
[18] | Liu Y, Shi S, Xu Y, et al. 2016. Quantitative classification of plant communities in the arid valley of the Jinsha River and environmental interpretation of their structural differentiation. Biodiversity, 24(4):407-420. (in Chinese) |
[19] | Ma B, Zhang Z Y, Zhou L L, et al. 2008. Spatial distribution characteristics of plant species diversity in Alxa Left Banner. Journal of Ecology, 28(12):6099-6106. (in Chinese) |
[20] | Meng Y Y, Zhou L, Zhou W M, et al. 2015. Variation characteristics of species diversity after 26 years of vegetation restoration in wind-down areas of Changbai Mountain. Journal of Ecology, 35(1):142-149. (in Chinese) |
[21] |
O’Brien E M. 1998. Water-energy dynamics, climate, and prediction of woody plant species richness: An interim general model. Journal of Biogeography, 25(2):379-398.
DOI URL |
[22] |
Qian H, Ricklefs R E. 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407(6801):180-182.
URL PMID |
[23] | Shen W S. 1996. Flora characteristics of the sandy land in the middle reaches of the Yarlung Zangbo River. Journal of Plant Taxonomy, 34(3):276-281. (in Chinese) |
[24] | Shen W S, Li H D, Lin N F, et al. 2012. Screening and restoration effects of suitable plant species on the mobile sand land in the Yarlung Zangbo River Alpine Valley. Journal of Ecology, 32(17):5609-5618. (in Chinese) |
[25] | Su C, Zhang X Y, Ma W H, et al. 2018. Altitude pattern and environmental interpretation of species diversity in the shrub community of Helan Mountain. Journal of Mountain Science, 36(5):699-708. (in Chinese) |
[26] | Tang Z, Fang J. 2004. A review on the elevational patterns of plant species diversity. Chinese Biodiversity, 12(1):20-28. |
[27] |
Thibaut L M, Connolly S R. 2013. Understanding diversity-stability relationships: Towards a unified model of portfolio effects. Ecology Letters, 16:140-150.
DOI URL |
[28] |
Wang J, Long T, Zhong Y, et al. 2017. Disentangling the influence of climate, soil and belowground microbes on local species richness in a dryland ecosystem of Northwest China. Scientific Reports, 7(1):18029. DOI: 10.1038/s41598-017-17860-7.
URL PMID |
[29] |
Wang Z, Fang J, Tang Z, et al. 2011. Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B-Biological Sciences, 278(1715):2122-2132.
DOI URL |
[30] |
Wright D H. 1983. Species-energy theory—An extension of species-area theory. Oikos, 41(3):496-506.
DOI URL |
[31] | Wang J M, Cui P J, Wang J M, et al. 2019. Plant species richness pattern and its environmental interpretation in Alxa Plateau. Journal of Beijing Forestry University, 41(3):14-23. (in Chinese) |
[32] | Wang J M, Dong F Y, Bahai N, et al. 2016. Plant distribution patterns and the factors influencing plant diversity in the Black Gobi Desert of China. Acta Ecologica Sinica, 36(12):3488-3498. (in Chinese) |
[33] | Wang J M, Wang W J, Li J W, et al. 2017. Distribution pattern of plant species richness and its environmental interpretation in desert regions of northwest China. Biodiversity, 25(11):1192-1201. (in Chinese) |
[34] | Wang J S, Yao S C, Pu Q, et al. 2016. Quantitative classification and ordination of grassland communities in the northern Tibetan Plateau. Acta Ecologica Sinica, 36(21):6889-6896. (in Chinese) |
[35] | Wang R, Yao Z J, Liu Z F, et al. 2015. Climate element changes and runoff responses in the middle reaches of the Yarlung Zangbo River. Resources Science, 37(3):619-628. (in Chinese) |
[36] |
Wang T, Ding Y K, Wang J S, et al. 2019. Quantitative classification and ordering of plant communities in the middle and upper reaches of the Yarlung Zangbo River. Journal of Resources and Ecology, 10(4):389-396.
DOI URL |
[37] |
Yang Y H, Wang J B, Liu P, et al. 2019. Climatic changes dominant interannual trend in net primary productivity of alpine vulnerable ecosystems. Journal of Resources and Ecology, 10(4):379-388.
DOI URL |
[38] | Yin K, Cui S H, Zhao Q J, et al. 2009. Prediction of plant diversity in urban forest undergrowth based on redundancy analysis. Journal of Ecology, 29(11):6085-6094. (in Chinese) |
[39] | Yu M, Zhou Z Y, Kang F F, et al. 2013. Gradient analysis and environmental interpretation of herbaceous plant communities under Xiaoshegou forest in Lingkong Mountain, Shanxi. Journal of Plant Ecology, 37(5):373-383. (in Chinese) |
[40] | Yuan L, Zhou H R, Zong Z L, et al. 2014. Structural characteristics and diversity of typical shrub communities in Urumqi. Northwestern Journal of Botany, 34(3):595-603. (in Chinese) |
[41] | Zhang J, Deng L L, Qin J L, et al. 2008. Investigation and evaluation of terrestrial vegetation in the middle reaches of the Yarlung Zangbo River in Tibet. Forest Resources Management, (4):118-123. (in Chinese) |
[42] | Zhao M, Wang J H, Zhang J C, et al. 2006. Diversity analysis of desert plant communities in the southern margin of the Kumtag Desert. Journal of Plant Ecology, 30(3):375-382. (in Chinese) |
[43] | Zhu G L, Li J, Wei X H, et al. 2017. Longitude pattern of vegetation productivity and biodiversity in alpine grasslands in Qinghai-Tibet. Journal of Natural Resources, 32(2):210-222. (in Chinese) |
[1] | HE Yafen. Spatial Behavior Characteristics of Land Use based on Fractal Theory: Taking Poyang Lake Area as an Example [J]. Journal of Resources and Ecology, 2021, 12(2): 192-202. |
[2] | Hari Prasad PANDEY. Implications of Anthropogenic Disturbances for Species Diversity, Recruitment and Carbon Density in the Mid-hills Forests of Nepal [J]. Journal of Resources and Ecology, 2021, 12(1): 1-10. |
[3] | WANG Yang, YUE Dan, LI Xinzhi. Genetic Diversity of Toona ciliata Populations based on SSR Markers [J]. Journal of Resources and Ecology, 2020, 11(5): 466-474. |
[4] | WANG Yang, JIANG Xiongbo, WU Dezhi. Species Diversity Characteristics of a Natural Pinus taiwanensis Community with Different Diameter Classes and Forest Densities [J]. Journal of Resources and Ecology, 2020, 11(4): 349-357. |
[5] | LU Chunxia, LIU Aimin, XIAO Yu, LIU Xiaojie, XIE Gaodi, CHENG Shengkui. Changes in China’s Grain Production Pattern and the Effects of Urbanization and Dietary Structure [J]. Journal of Resources and Ecology, 2020, 11(4): 358-365. |
[6] | ZHANG Changshun, ZHEN Lin, LIU Chunlan, LIANG Yihang. Research on the Patterns and Evolution of Ecosystem Service Consumption in the “Belt and Road” [J]. Journal of Resources and Ecology, 2019, 10(6): 621-631. |
[7] | WANG Yang, ZHU Shengjie, LI Jie, HE Xiuling, JIANG Xiongbo, ZHANG Min. Species Abundance Distribution Patterns of a Toona ciliata Community in Xingdoushan Nature Reserve [J]. Journal of Resources and Ecology, 2019, 10(5): 494-503. |
[8] | XU Jie,XIAO Yu,XIE Gaodi. Analysis on the Spatio-temporal Patterns of Water Conservation Services in Beijing [J]. Journal of Resources and Ecology, 2019, 10(4): 362-372. |
[9] | WANG Tong,WANG Jingsheng,DING Yuke,LIU Wenjing,BAO Xiaoting,LI Chao. Quantitative Classification and Ordination of Plant Communities in the Upper and Middle Reaches of the Yarlung Zangbo River Basin [J]. Journal of Resources and Ecology, 2019, 10(4): 389-396. |
[10] | GENG Shoubao,ZHU Wanrui,SHI Peili. A Functional Land Use Classification for Ecological, Production and Living Spaces in the Taihang Mountains [J]. Journal of Resources and Ecology, 2019, 10(3): 246-255. |
[11] | CAO Yuhong,CHEN Chen,LIU Chonggang,LI Lulu,LIU Meiyun. Temporal and Spatial Variations of Eco-asset Patterns and the Factors Driving Change in the Wanjiang Demonstration Area [J]. Journal of Resources and Ecology, 2019, 10(3): 282-288. |
[12] | WANG Shaoqiang,WANG Junbang,ZHANG Leiming,XIAO Zhishu,WANG Feng,SUN Nan,LI Daiqing,CHEN Bin,CHEN Jinghua,LI Yue,WANG Xiaobo,WANG Miaomiao. A National Key R&D Program: Technologies and Guidelines for Monitoring Ecological Quality of Terrestrial Ecosystems in China [J]. Journal of Resources and Ecology, 2019, 10(2): 105-111. |
[13] | CHEN Jinghua,WANG Shaoqiang,Florian KRAXNER,Juraj BALKOVIC,XU Xiyan,SUN Leigang. Spatial Analysis of the Soil Carbon Sequestration Potential of Crop-residue Return in China Based on Model Simulation [J]. Journal of Resources and Ecology, 2019, 10(2): 184-195. |
[14] | TIAN Li, ZHANG Yangjian, Claus HOLZAPFEL, HUANG Ke, CHEN Ning, TAO Jian, ZHU Juntao. Vegetation Pattern in Northern Tibet in Relation to Environmental and Geo-spatial Factors [J]. Journal of Resources and Ecology, 2018, 9(5): 526-537. |
[15] | CHEN Xiaopeng, CHENG Shengkui, WU Liang. Quantitative Analysis of Central Asian Countries’ Energy Security and Its Political Influence Factors [J]. Journal of Resources and Ecology, 2018, 9(4): 434-443. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||