Journal of Resources and Ecology ›› 2020, Vol. 11 ›› Issue (6): 549-561.DOI: 10.5814/j.issn.1674-764x.2020.06.002
• Resource Economy • Previous Articles Next Articles
XIAO Qinlin(), TIAN Chao, WANG Yanjun, LI Xiuqing, XIAO Liming*(
)
Received:
2020-05-28
Accepted:
2020-08-02
Online:
2020-11-30
Published:
2020-10-25
Contact:
XIAO Liming
About author:
XIAO Qinlin, E-mail: x853903799@163.com
Supported by:
XIAO Qinlin, TIAN Chao, WANG Yanjun, LI Xiuqing, XIAO Liming. Measurement and Comparison of Urban Haze Governance Level and Efficiency based on the DPSIR Model: A Case Study of 31 Cities in North China[J]. Journal of Resources and Ecology, 2020, 11(6): 549-561.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2020.06.002
Target layer | Rule layer | Index layer | Unit | Direction |
---|---|---|---|---|
Haze governance level | Driving force | Municipal public infrastructure investment | ×104 yuan | positive |
Urban personnel in the management of water conservancy, environment, and public facilities | ×104 person | positive | ||
Energy consumption per unit of GDP | tons of standard coal (×104 yuan)-1 | negative | ||
Pressure | Effluent discharge | t | negative | |
Sulfur dioxide emission | t | negative | ||
Dust discharge | t | negative | ||
State | Proportion of secondary industry | % | negative | |
Mean of PM2.5 | μg m-3 | negative | ||
Impact | Domestic tourism revenue | ×104 yuan | positive | |
Comprehensive utilization rate of solid waste | % | positive | ||
Green coverage in built-up areas | % | positive | ||
Response | Spending on science and technology as a share of GDP | % | positive | |
Spending on education as a share of GDP | % | positive | ||
Number of patent applications granted in different regions | number | positive |
Table 1 Index system of haze governance level
Target layer | Rule layer | Index layer | Unit | Direction |
---|---|---|---|---|
Haze governance level | Driving force | Municipal public infrastructure investment | ×104 yuan | positive |
Urban personnel in the management of water conservancy, environment, and public facilities | ×104 person | positive | ||
Energy consumption per unit of GDP | tons of standard coal (×104 yuan)-1 | negative | ||
Pressure | Effluent discharge | t | negative | |
Sulfur dioxide emission | t | negative | ||
Dust discharge | t | negative | ||
State | Proportion of secondary industry | % | negative | |
Mean of PM2.5 | μg m-3 | negative | ||
Impact | Domestic tourism revenue | ×104 yuan | positive | |
Comprehensive utilization rate of solid waste | % | positive | ||
Green coverage in built-up areas | % | positive | ||
Response | Spending on science and technology as a share of GDP | % | positive | |
Spending on education as a share of GDP | % | positive | ||
Number of patent applications granted in different regions | number | positive |
Index type | Primary index | Secondary indicators | Unit | Direction |
---|---|---|---|---|
Input indicators | Capital investment | Municipal public infrastructure investment | ×104 yuan | positive |
Spending on science and technology as a share of GDP | % | positive | ||
Spending on education as a share of GDP | % | positive | ||
Labor input | Urban personnel in the management of water conservancy, the environment, and public facilities | ×104 person | positive | |
Technology input | Number of patent applications granted in different regions | number | positive | |
Resources input | Energy consumption per unit of GDP | tons of standard coal (×104 yuan)-1 | negative | |
Output indicators | Desirable output | Domestic tourism revenue | ×104 yuan | positive |
Comprehensive utilization rate of solid waste | % | positive | ||
Green coverage in built-up areas | % | positive | ||
Undesirable output | Industrial wastewater discharge | t | negative | |
Industrial sulfur dioxide emissions | t | negative | ||
Industrial dust emission | t | negative | ||
PM2.5 | μg m-3 | negative |
Table 2 Index system of haze governance efficiency
Index type | Primary index | Secondary indicators | Unit | Direction |
---|---|---|---|---|
Input indicators | Capital investment | Municipal public infrastructure investment | ×104 yuan | positive |
Spending on science and technology as a share of GDP | % | positive | ||
Spending on education as a share of GDP | % | positive | ||
Labor input | Urban personnel in the management of water conservancy, the environment, and public facilities | ×104 person | positive | |
Technology input | Number of patent applications granted in different regions | number | positive | |
Resources input | Energy consumption per unit of GDP | tons of standard coal (×104 yuan)-1 | negative | |
Output indicators | Desirable output | Domestic tourism revenue | ×104 yuan | positive |
Comprehensive utilization rate of solid waste | % | positive | ||
Green coverage in built-up areas | % | positive | ||
Undesirable output | Industrial wastewater discharge | t | negative | |
Industrial sulfur dioxide emissions | t | negative | ||
Industrial dust emission | t | negative | ||
PM2.5 | μg m-3 | negative |
Region | Haze governance level | Haze governance efficiency | Indifference between rank of level versus efficiency | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2007 | 2010 | 2013 | 2016 | Mean | Ranking for level | 2007 | 2010 | 2013 | 2016 | Mean | Ranking for efficiency | ||||||||||||||||
Taiyuan | 0.736 | 0.696 | 0.871 | 0.855 | 0.777 | 1 | 1.042 | 1.066 | 1.212 | 1.279 | 1.165 | 16 | ↑ | ||||||||||||||
Shijiazhuang | 0.652 | 0.604 | 0.524 | 0.650 | 0.629 | 2 | 1.003 | 1.036 | 1.040 | 1.029 | 1.011 | 24 | ↑ | ||||||||||||||
Hohhot | 0.458 | 0.456 | 0.364 | 0.483 | 0.471 | 3 | 1.334 | 1.427 | 1.398 | 1.117 | 1.401 | 4 | ↑ | ||||||||||||||
Tangshan | 0.485 | 0.510 | 0.339 | 0.342 | 0.448 | 4 | 1.023 | 1.033 | 1.022 | 1.013 | 0.945 | 26 | ↑ | ||||||||||||||
Baotou | 0.434 | 0.407 | 0.342 | 0.392 | 0.419 | 5 | 1.235 | 1.328 | 1.183 | 1.242 | 1.214 | 13 | ↑ | ||||||||||||||
Handan | 0.422 | 0.433 | 0.353 | 0.362 | 0.409 | 6 | 1.009 | 1.031 | 1.040 | 0.764 | 0.963 | 25 | ↑ | ||||||||||||||
Baoding | 0.433 | 0.413 | 0.366 | 0.414 | 0.401 | 7 | 1.109 | 1.089 | 1.353 | 1.668 | 1.275 | 9 | ↑ | ||||||||||||||
Qinhuangdao | 0.488 | 0.393 | 0.305 | 0.406 | 0.382 | 8 | 1.605 | 1.240 | 1.208 | 1.044 | 1.278 | 8 | no change | ||||||||||||||
Changzhi | 0.354 | 0.378 | 0.336 | 0.361 | 0.365 | 9 | 1.006 | 0.733 | 0.691 | 1.006 | 0.810 | 29 | ↑ | ||||||||||||||
Datong | 0.368 | 0.390 | 0.319 | 0.334 | 0.362 | 10 | 1.001 | 1.053 | 1.049 | 1.144 | 1.028 | 22 | ↑ | ||||||||||||||
Ordos | 0.328 | 0.379 | 0.276 | 0.248 | 0.359 | 11 | 1.468 | 1.672 | 1.345 | 1.364 | 1.437 | 3 | ↓ | ||||||||||||||
Zhangjiakou | 0.380 | 0.324 | 0.284 | 0.355 | 0.343 | 12 | 1.004 | 1.038 | 1.096 | 1.152 | 1.053 | 21 | ↑ | ||||||||||||||
Jinzhong | 0.334 | 0.352 | 0.318 | 0.342 | 0.340 | 13 | 1.072 | 1.200 | 1.374 | 1.370 | 1.194 | 14 | ↑ | ||||||||||||||
Xinzhou | 0.350 | 0.376 | 0.366 | 0.303 | 0.339 | 14 | 1.729 | 1.297 | 1.125 | 0.738 | 1.157 | 18 | ↑ | ||||||||||||||
Langfang | 0.464 | 0.373 | 0.258 | 0.358 | 0.336 | 15 | 1.280 | 1.049 | 1.069 | 1.091 | 1.088 | 20 | ↑ | ||||||||||||||
Hulun Buir | 0.312 | 0.321 | 0.282 | 0.289 | 0.327 | 16 | 2.251 | 2.394 | 1.955 | 1.211 | 1.912 | 1 | ↓ | ||||||||||||||
Chifeng | 0.389 | 0.331 | 0.266 | 0.323 | 0.321 | 17 | 1.361 | 1.138 | 1.135 | 1.206 | 1.170 | 15 | ↓ | ||||||||||||||
Linfen | 0.330 | 0.352 | 0.290 | 0.299 | 0.319 | 18 | 1.039 | 1.053 | 0.721 | 0.701 | 0.839 | 28 | ↑ | ||||||||||||||
Chengde | 0.362 | 0.330 | 0.264 | 0.319 | 0.316 | 19 | 1.012 | 1.094 | 1.212 | 1.104 | 1.159 | 17 | ↓ | ||||||||||||||
Lvliang | 0.285 | 0.320 | 0.314 | 0.313 | 0.313 | 20 | 1.398 | 1.058 | 0.725 | 1.001 | 1.138 | 19 | ↓ | ||||||||||||||
Jincheng | 0.329 | 0.315 | 0.287 | 0.261 | 0.309 | 21 | 1.080 | 1.007 | 1.018 | 1.049 | 1.026 | 23 | ↑ | ||||||||||||||
Ulanqab | 0.290 | 0.277 | 0.251 | 0.248 | 0.282 | 22 | 1.835 | 1.224 | 1.473 | 1.748 | 1.580 | 2 | ↓ | ||||||||||||||
Xingtai | 0.309 | 0.305 | 0.211 | 0.296 | 0.275 | 23 | 1.084 | 1.048 | 1.003 | 0.562 | 0.865 | 27 | ↑ | ||||||||||||||
Wuhai | 0.290 | 0.305 | 0.257 | 0.306 | 0.273 | 24 | 1.591 | 1.238 | 1.319 | 1.318 | 1.283 | 7 | ↓ | ||||||||||||||
Cangzhou | 0.333 | 0.281 | 0.207 | 0.271 | 0.269 | 25 | 1.389 | 1.577 | 1.078 | 1.029 | 1.249 | 11 | ↓ | ||||||||||||||
Yuncheng | 0.274 | 0.261 | 0.258 | 0.242 | 0.264 | 26 | 0.494 | 1.010 | 0.664 | 1.001 | 0.799 | 31 | ↑ | ||||||||||||||
Shuozhou | 0.251 | 0.270 | 0.258 | 0.196 | 0.256 | 27 | 1.390 | 1.248 | 1.328 | 1.236 | 1.345 | 5 | ↓ | ||||||||||||||
Yangquan | 0.285 | 0.302 | 0.227 | 0.210 | 0.255 | 28 | 1.106 | 1.132 | 1.251 | 1.232 | 1.263 | 10 | ↓ | ||||||||||||||
Bayan Nur | 0.257 | 0.353 | 0.232 | 0.225 | 0.255 | 29 | 1.008 | 1.473 | 1.139 | 1.117 | 1.216 | 12 | ↓ | ||||||||||||||
Tongliao | 0.281 | 0.303 | 0.229 | 0.219 | 0.252 | 30 | 0.662 | 1.182 | 1.081 | 0.840 | 0.808 | 30 | no change | ||||||||||||||
Hengshui | 0.298 | 0.256 | 0.177 | 0.237 | 0.222 | 31 | 1.268 | 1.137 | 1.459 | 1.745 | 1.323 | 6 | ↓ | ||||||||||||||
Hebei | 0.421 | 0.384 | 0.299 | 0.365 | 0.366 | Ⅰ | 1.162 | 1.125 | 1.144 | 1.109 | 1.110 | Ⅱ | ↑ | ||||||||||||||
Shanxi | 0.354 | 0.365 | 0.349 | 0.338 | 0.354 | Ⅱ | 1.123 | 1.078 | 1.014 | 1.069 | 1.069 | Ⅲ | ↑ | ||||||||||||||
Inner Mongolia | 0.338 | 0.348 | 0.278 | 0.304 | 0.329 | Ⅲ | 1.416 | 1.453 | 1.337 | 1.240 | 1.336 | Ⅰ | ↓ | ||||||||||||||
North China | 0.373 | 0.367 | 0.311 | 0.337 | 0.351 | ? | 1.222 | 1.203 | 1.154 | 1.133 | 1.161 | ? | ? |
Table 3 Comparisons of haze governance level and efficiency for 31 cities in North China
Region | Haze governance level | Haze governance efficiency | Indifference between rank of level versus efficiency | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2007 | 2010 | 2013 | 2016 | Mean | Ranking for level | 2007 | 2010 | 2013 | 2016 | Mean | Ranking for efficiency | ||||||||||||||||
Taiyuan | 0.736 | 0.696 | 0.871 | 0.855 | 0.777 | 1 | 1.042 | 1.066 | 1.212 | 1.279 | 1.165 | 16 | ↑ | ||||||||||||||
Shijiazhuang | 0.652 | 0.604 | 0.524 | 0.650 | 0.629 | 2 | 1.003 | 1.036 | 1.040 | 1.029 | 1.011 | 24 | ↑ | ||||||||||||||
Hohhot | 0.458 | 0.456 | 0.364 | 0.483 | 0.471 | 3 | 1.334 | 1.427 | 1.398 | 1.117 | 1.401 | 4 | ↑ | ||||||||||||||
Tangshan | 0.485 | 0.510 | 0.339 | 0.342 | 0.448 | 4 | 1.023 | 1.033 | 1.022 | 1.013 | 0.945 | 26 | ↑ | ||||||||||||||
Baotou | 0.434 | 0.407 | 0.342 | 0.392 | 0.419 | 5 | 1.235 | 1.328 | 1.183 | 1.242 | 1.214 | 13 | ↑ | ||||||||||||||
Handan | 0.422 | 0.433 | 0.353 | 0.362 | 0.409 | 6 | 1.009 | 1.031 | 1.040 | 0.764 | 0.963 | 25 | ↑ | ||||||||||||||
Baoding | 0.433 | 0.413 | 0.366 | 0.414 | 0.401 | 7 | 1.109 | 1.089 | 1.353 | 1.668 | 1.275 | 9 | ↑ | ||||||||||||||
Qinhuangdao | 0.488 | 0.393 | 0.305 | 0.406 | 0.382 | 8 | 1.605 | 1.240 | 1.208 | 1.044 | 1.278 | 8 | no change | ||||||||||||||
Changzhi | 0.354 | 0.378 | 0.336 | 0.361 | 0.365 | 9 | 1.006 | 0.733 | 0.691 | 1.006 | 0.810 | 29 | ↑ | ||||||||||||||
Datong | 0.368 | 0.390 | 0.319 | 0.334 | 0.362 | 10 | 1.001 | 1.053 | 1.049 | 1.144 | 1.028 | 22 | ↑ | ||||||||||||||
Ordos | 0.328 | 0.379 | 0.276 | 0.248 | 0.359 | 11 | 1.468 | 1.672 | 1.345 | 1.364 | 1.437 | 3 | ↓ | ||||||||||||||
Zhangjiakou | 0.380 | 0.324 | 0.284 | 0.355 | 0.343 | 12 | 1.004 | 1.038 | 1.096 | 1.152 | 1.053 | 21 | ↑ | ||||||||||||||
Jinzhong | 0.334 | 0.352 | 0.318 | 0.342 | 0.340 | 13 | 1.072 | 1.200 | 1.374 | 1.370 | 1.194 | 14 | ↑ | ||||||||||||||
Xinzhou | 0.350 | 0.376 | 0.366 | 0.303 | 0.339 | 14 | 1.729 | 1.297 | 1.125 | 0.738 | 1.157 | 18 | ↑ | ||||||||||||||
Langfang | 0.464 | 0.373 | 0.258 | 0.358 | 0.336 | 15 | 1.280 | 1.049 | 1.069 | 1.091 | 1.088 | 20 | ↑ | ||||||||||||||
Hulun Buir | 0.312 | 0.321 | 0.282 | 0.289 | 0.327 | 16 | 2.251 | 2.394 | 1.955 | 1.211 | 1.912 | 1 | ↓ | ||||||||||||||
Chifeng | 0.389 | 0.331 | 0.266 | 0.323 | 0.321 | 17 | 1.361 | 1.138 | 1.135 | 1.206 | 1.170 | 15 | ↓ | ||||||||||||||
Linfen | 0.330 | 0.352 | 0.290 | 0.299 | 0.319 | 18 | 1.039 | 1.053 | 0.721 | 0.701 | 0.839 | 28 | ↑ | ||||||||||||||
Chengde | 0.362 | 0.330 | 0.264 | 0.319 | 0.316 | 19 | 1.012 | 1.094 | 1.212 | 1.104 | 1.159 | 17 | ↓ | ||||||||||||||
Lvliang | 0.285 | 0.320 | 0.314 | 0.313 | 0.313 | 20 | 1.398 | 1.058 | 0.725 | 1.001 | 1.138 | 19 | ↓ | ||||||||||||||
Jincheng | 0.329 | 0.315 | 0.287 | 0.261 | 0.309 | 21 | 1.080 | 1.007 | 1.018 | 1.049 | 1.026 | 23 | ↑ | ||||||||||||||
Ulanqab | 0.290 | 0.277 | 0.251 | 0.248 | 0.282 | 22 | 1.835 | 1.224 | 1.473 | 1.748 | 1.580 | 2 | ↓ | ||||||||||||||
Xingtai | 0.309 | 0.305 | 0.211 | 0.296 | 0.275 | 23 | 1.084 | 1.048 | 1.003 | 0.562 | 0.865 | 27 | ↑ | ||||||||||||||
Wuhai | 0.290 | 0.305 | 0.257 | 0.306 | 0.273 | 24 | 1.591 | 1.238 | 1.319 | 1.318 | 1.283 | 7 | ↓ | ||||||||||||||
Cangzhou | 0.333 | 0.281 | 0.207 | 0.271 | 0.269 | 25 | 1.389 | 1.577 | 1.078 | 1.029 | 1.249 | 11 | ↓ | ||||||||||||||
Yuncheng | 0.274 | 0.261 | 0.258 | 0.242 | 0.264 | 26 | 0.494 | 1.010 | 0.664 | 1.001 | 0.799 | 31 | ↑ | ||||||||||||||
Shuozhou | 0.251 | 0.270 | 0.258 | 0.196 | 0.256 | 27 | 1.390 | 1.248 | 1.328 | 1.236 | 1.345 | 5 | ↓ | ||||||||||||||
Yangquan | 0.285 | 0.302 | 0.227 | 0.210 | 0.255 | 28 | 1.106 | 1.132 | 1.251 | 1.232 | 1.263 | 10 | ↓ | ||||||||||||||
Bayan Nur | 0.257 | 0.353 | 0.232 | 0.225 | 0.255 | 29 | 1.008 | 1.473 | 1.139 | 1.117 | 1.216 | 12 | ↓ | ||||||||||||||
Tongliao | 0.281 | 0.303 | 0.229 | 0.219 | 0.252 | 30 | 0.662 | 1.182 | 1.081 | 0.840 | 0.808 | 30 | no change | ||||||||||||||
Hengshui | 0.298 | 0.256 | 0.177 | 0.237 | 0.222 | 31 | 1.268 | 1.137 | 1.459 | 1.745 | 1.323 | 6 | ↓ | ||||||||||||||
Hebei | 0.421 | 0.384 | 0.299 | 0.365 | 0.366 | Ⅰ | 1.162 | 1.125 | 1.144 | 1.109 | 1.110 | Ⅱ | ↑ | ||||||||||||||
Shanxi | 0.354 | 0.365 | 0.349 | 0.338 | 0.354 | Ⅱ | 1.123 | 1.078 | 1.014 | 1.069 | 1.069 | Ⅲ | ↑ | ||||||||||||||
Inner Mongolia | 0.338 | 0.348 | 0.278 | 0.304 | 0.329 | Ⅲ | 1.416 | 1.453 | 1.337 | 1.240 | 1.336 | Ⅰ | ↓ | ||||||||||||||
North China | 0.373 | 0.367 | 0.311 | 0.337 | 0.351 | ? | 1.222 | 1.203 | 1.154 | 1.133 | 1.161 | ? | ? |
Variable | Variable name | Unit | Observations | Mean | S.D. | Minimum value | Maximum value |
---|---|---|---|---|---|---|---|
hgl | Haze governance level | - | 310 | 0.35 | 0.12 | 0.177 | 0.87 |
hge | Haze governance efficiency | - | 310 | 1.16 | 0.31 | 0.484 | 2.66 |
pgdp | GDP per capita | yuan person-1 | 310 | 48973.99 | 46015.47 | 8395 | 371725 |
is | Proportion of secondary industry | % | 310 | 51.74 | 8.30 | 27.87 | 73.71 |
fdi | Actual utilization of foreign capital | ×104 yuan | 310 | 228000 | 245000 | 1328.46 | 1300000 |
ds | Population density | person km-2 | 310 | 4467.28 | 3429.06 | 248 | 12968 |
js | Proportion of construction land in urban area | % | 310 | 13.15 | 14.21 | 0.67 | 97.18 |
Table 4 Descriptive statistics of the main variables
Variable | Variable name | Unit | Observations | Mean | S.D. | Minimum value | Maximum value |
---|---|---|---|---|---|---|---|
hgl | Haze governance level | - | 310 | 0.35 | 0.12 | 0.177 | 0.87 |
hge | Haze governance efficiency | - | 310 | 1.16 | 0.31 | 0.484 | 2.66 |
pgdp | GDP per capita | yuan person-1 | 310 | 48973.99 | 46015.47 | 8395 | 371725 |
is | Proportion of secondary industry | % | 310 | 51.74 | 8.30 | 27.87 | 73.71 |
fdi | Actual utilization of foreign capital | ×104 yuan | 310 | 228000 | 245000 | 1328.46 | 1300000 |
ds | Population density | person km-2 | 310 | 4467.28 | 3429.06 | 248 | 12968 |
js | Proportion of construction land in urban area | % | 310 | 13.15 | 14.21 | 0.67 | 97.18 |
Variables | ln hgl | ln hge | ||
---|---|---|---|---|
Regression coefficient | T statistic | Regression coefficient | T statistic | |
C | 0.2759** | 2.35 | 0.4642 | 0.74 |
ln pgdp | -0.0141*** | -3.48 | -0.0786*** | -3.63 |
ln is | 0.0530** | 2.19 | 0.1264 | 0.98 |
ln fdi | -0.0067** | -2.15 | 0.0174 | 1.04 |
ln ds | 0.0052 | 1.09 | -0.0125 | -0.49 |
ln js | -0.0008 | -0.14 | -0.0604** | -2.02 |
R2 | 0.0935 | 0.0723 | ||
F-statistic | 5.65 | 4.27 | ||
Prob(F-statistic) | 0.0000 | 0.0000 | ||
N | 310 | 310 |
Table 5 Analysis of factors affecting the level and efficiency of haze governance
Variables | ln hgl | ln hge | ||
---|---|---|---|---|
Regression coefficient | T statistic | Regression coefficient | T statistic | |
C | 0.2759** | 2.35 | 0.4642 | 0.74 |
ln pgdp | -0.0141*** | -3.48 | -0.0786*** | -3.63 |
ln is | 0.0530** | 2.19 | 0.1264 | 0.98 |
ln fdi | -0.0067** | -2.15 | 0.0174 | 1.04 |
ln ds | 0.0052 | 1.09 | -0.0125 | -0.49 |
ln js | -0.0008 | -0.14 | -0.0604** | -2.02 |
R2 | 0.0935 | 0.0723 | ||
F-statistic | 5.65 | 4.27 | ||
Prob(F-statistic) | 0.0000 | 0.0000 | ||
N | 310 | 310 |
1 | Bai J H, Nie L . 2017. Is environmental decentralization really exacerbating haze pollution? China Population, Resources and Environment, 27(12):59-69. (in Chinese) |
2 |
Cai W, Li K, Liao H , et al. 2017. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nature Climate Change, 7(4):257-262.
DOI URL |
3 | Cao X, Yu J . 2015. Regional innovation efficiency in China from the green low-carbon perspective. China Population, Resources and Environment, 25(5):10-19. (in Chinese) |
4 |
Charnes A, Cooper W W, Rhodes E . 1978. Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6):429-444.
DOI URL |
5 | Chen G . 2009. The competition for FDI, environmental regulation, and pollution haven. World Economy Study,(6): 5-9, 45,89. (in Chinese) |
6 | Chen L L, Jin L H . 2014. An improved fuzzy comprehensive evaluation method of eutrophication for lakes and reservoirs. China Environmental Science, 34(12):3223-3229. (in Chinese) |
7 | Chen S Y, Wang J M . 2018. Evaluation and policy innovation of urban haze governance in China: Taking the Yangtze River Delta Area as an example. China Population, Resources and Environment, 28(10):71-80. (in Chinese) |
8 |
Chen Y Y, Ebenstein A, Greenstone M , et al. 2013. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proceedings of the National Academy of Sciences of the USA, 110(32):12936-12941.
DOI URL PMID |
9 | Chu Z P, Liu C X, Zhu J . 2017. Evolutionary game analysis on cooperative governance of haze in Beijing-Tianjin-Hebei based on the logic of collective action. China Population, Resources and Environment, 27(9):56-65. (in Chinese) |
10 | Dong X H, Hu Y L, Li W X . 2008. A international comparisons and historical analysis on China’s environmental governance efficiency: Based on the model of DEA. Studies in Science of Science, 26(6):1221-1230. (in Chinese) |
11 | Fu P . 2018. The realistic path choice of urban haze management in the New Normal. Manage World, 34(12):179-180. (in Chinese) |
12 | Fang Y L, Huang Z F, Zhang H , et al. 2014. The asynchronous phenomenon and relative efficiency of tourism resources in China: Taking the 31 provinces’ panel data from 2001 to 2009 for an example. Journal of Natural Resources, 5(3):280-288. (in Chinese) |
13 | Gan T, Wang Z L . 2018. Measurement on the efficiency of urban environment governance in the Yangtze River Delta Area. Urban Problems, ( 1):81-88. (in Chinese) |
14 | Hao G C, Xu Y L, Zhang X M , et al. 2018. Spillover effect and decomposition of green economic performance of the city in the Yangtze River Economic Belt. China Population, Resources and Environment, 28(5):75-83. (in Chinese) |
15 | Islam M, Pei Y H, Mangharm S . 2016. Trans-boundary haze pollution in southeast Asia: Sustainability through plural environmental governance. Sustainability, 8(5):499. DOI: 10.3390/su8050499. |
16 | Jiang C H, Song Z Y, Feng Z . 2017. Haze governance and it’s economic and social effect: An analysis of CGE model based on “Coal Restricted Area” policy. China Industrial Economics, ( 9):44-62. (in Chinese) |
17 | Li S, Wei H, Ni X L , et al. 2014. Evaluation of urban human settlement quality in Ningxia based on AHP and the entropy method. Chinese Journal of Applied Ecology, 25(9):2700-2708. (in Chinese) |
18 | Meng Q G, Du H T, Wang J Z . 2017. The analysis of local governments’ behavior in haze control from the perspective of interest demand. China Soft Science, ( 11):66-76. (in Chinese) |
19 | Shi Q L, Guo F, Chen S Y . 2016. “Political Blue Sky” in fog and haze governance — Evidence from the local annual “Two Sessions” in China. China Industrial Economics, (5):40-56. (in Chinese) |
20 |
Tone K . 2001. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3):498-509.
DOI URL |
21 |
Tone K . 2002. A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research, 143(1):32-41.
DOI URL |
22 | Tong Y F, Wang Y Y . 2014. The interaction mechanism of urban population and haze in China. Social Sciences of Beijing, (5):4-10. (in Chinese) |
23 | Wang J M, Yang W P, Yang L . 2016. Estimation of China’s energy structure adjustment with the win-win goal constraints. China Population, Resources and Environment, 26(3):27-36. (in Chinese) |
24 | Wang B, Hao F . 2015. Innovations in legislation on haze environmental responsibility: Perspective of modern environmental responsibility. China Soft Science, ( 3):1-8. (in Chinese) |
25 | Wang Q, Li H F, Ao J H . 2018. Research on the evaluation index system of smog governance mechanism through Beijing-Tianjin-Hebei tripartite linkage. Contemporary Economy & Management, 40(3):25-31. (in Chinese) |
26 | Wang Q, Guo F, Xu X Y , et al. 2012. The evaluation of urban environmental governance efficiency of China and its temporal-spatial changes study. World Regional Studies, 21(4):153-162. (in Chinese) |
27 | Wang S J, Gao S, Chen J . 2020. Spatial heterogeneity of driving factors of urban haze pollution in China based on GWR model. Geographical Research, 39(3):651-668. (in Chinese) |
28 | Yu B H, Lu C H . 2004. Application of DPSIR framework for analyses of sustainable agricultural development. China Population, Resources and Environment, (5):68-72. (in Chinese) |
29 | Zhang L J, Li N, Qin Y C , et al. 2019. The low-carbon city evaluation and its spatial differentiation based on the DPSIR. World Regional Studies, 28(3):85-94. (in Chinese) |
30 | Zhang J Q, Zhang L, Wang S , et al. 2017. Study on regional sustainable development efficiency measurement and influencing factors: Based on DPSIR-DEA Model. China Population, Resources and Environment, 27(11):1-9. (in Chinese) |
31 | Zhou W J, Liu W L . 2016. Haze governance from the ecological civilization perspective. Journal of Xinjiang University: Philosophy, Humanities & Social Sciences, 44(5):30-35. (in Chinese) |
32 | Zhou Z Q, Xia N X, Liang W G . 2019. FDI, independent innovation and haze pollution: Evidence from China. R&D Management, 31(2):82-94. (in Chinese) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||