Journal of Resources and Ecology ›› 2020, Vol. 11 ›› Issue (5): 508-515.DOI: 10.5814/j.issn.1674-764x.2020.05.008
• Human Activities and Ecosystem • Previous Articles Next Articles
TIAN Yuhong*(), LIU Fenghua, WANG Tiantian
Received:
2019-05-23
Accepted:
2020-03-20
Online:
2020-09-30
Published:
2020-09-30
Contact:
TIAN Yuhong
Supported by:
TIAN Yuhong, LIU Fenghua, WANG Tiantian. Spatial Distribution of Surface Soil Organic Carbon Density and Related Factors along an Urbanization Gradient in Beijing[J]. Journal of Resources and Ecology, 2020, 11(5): 508-515.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2020.05.008
Fig. 1 Location of study area Note: CFCA, capital function core area; UFEZ, urban function expansion zone; UDNZ, urban development new zone; ECA, ecological conservation area.
Items | CFCA | UFEZ | UDNZ | ECA | |
---|---|---|---|---|---|
Population (×106) | 1982 | 241.70 | 283.99 | 143.57 | 49.36 |
1990 | 233.64 | 398.90 | 167.44 | 53.17 | |
2000 | 229.43 | 638.86 | 198.17 | 56.25 | |
2012 | 226.90 | 1012.72 | 362.40 | 70.82 | |
Population density (person km-2) | 2012 | 24232.46 | 7742.29 | 1226.40 | 199.71 |
Total area (km2) | 91.99 | 1275.61 | 6299.22 | 8743.73 | |
GDP (×108 Yuan) | 2009 | 2791 | 5140 | 1590 | 478 |
GDP per capita (Yuan) | 2009 | 27668 | 72205 | 5709 | 3653 |
Economy density (×108 Yuan km-2) | 2009 | 29.99 | 3.99 | 0.25 | 0.05 |
Industry structure (%) | Primary | 0 | 0.10 | 5.76 | 9.21 |
Second | 7.95 | 26.55 | 52.36 | 44.91 | |
Third | 92.05 | 73.36 | 41.88 | 45.89 |
Table 1 Population, GDP and industry structure in different functional regions
Items | CFCA | UFEZ | UDNZ | ECA | |
---|---|---|---|---|---|
Population (×106) | 1982 | 241.70 | 283.99 | 143.57 | 49.36 |
1990 | 233.64 | 398.90 | 167.44 | 53.17 | |
2000 | 229.43 | 638.86 | 198.17 | 56.25 | |
2012 | 226.90 | 1012.72 | 362.40 | 70.82 | |
Population density (person km-2) | 2012 | 24232.46 | 7742.29 | 1226.40 | 199.71 |
Total area (km2) | 91.99 | 1275.61 | 6299.22 | 8743.73 | |
GDP (×108 Yuan) | 2009 | 2791 | 5140 | 1590 | 478 |
GDP per capita (Yuan) | 2009 | 27668 | 72205 | 5709 | 3653 |
Economy density (×108 Yuan km-2) | 2009 | 29.99 | 3.99 | 0.25 | 0.05 |
Industry structure (%) | Primary | 0 | 0.10 | 5.76 | 9.21 |
Second | 7.95 | 26.55 | 52.36 | 44.91 | |
Third | 92.05 | 73.36 | 41.88 | 45.89 |
Functional region | Park | Roadside | Residential | Farmland/plantation | Woodland | Others | Total |
---|---|---|---|---|---|---|---|
CFCA | 4 | 16 | 6 | 3 | 29 | ||
UFEZ | 3 | 14 | 7 | 2 | 3 | 8 | 37 |
UDNZ | 1 | 14 | 4 | 4 | 7 | 2 | 32 |
ECA | 5 | 7 | 5 | 13 | 10 | 2 | 42 |
Total | 13 | 51 | 22 | 19 | 20 | 15 | 140 |
Table 2 Sample numbers of different green space types in different functional regions
Functional region | Park | Roadside | Residential | Farmland/plantation | Woodland | Others | Total |
---|---|---|---|---|---|---|---|
CFCA | 4 | 16 | 6 | 3 | 29 | ||
UFEZ | 3 | 14 | 7 | 2 | 3 | 8 | 37 |
UDNZ | 1 | 14 | 4 | 4 | 7 | 2 | 32 |
ECA | 5 | 7 | 5 | 13 | 10 | 2 | 42 |
Total | 13 | 51 | 22 | 19 | 20 | 15 | 140 |
Observation index | Abbreviation | Measurement method | References |
---|---|---|---|
Soil organic carbon | TOC | Walkley-Black method | Bremmer and Mulvaney, 1982 |
Total carbon | TC | Kjeldahl digestion method | |
pH | pH | pH meter method | |
Total nitrogen | TN | Kjeldahl digestion method | |
Total phosphorus | P | Ammonium molybdate method | |
Available potassium | K | NH4OAc digestion | |
Content of gravel | Gravel | Pipette method | |
Content of coarse sand | CS | Pipette method | |
Content of fine sand | FS | Pipette method | |
Content of silt | Silt | Pipette method | |
Content of clay | Clay | Pipette method | |
Water content | Oven drying method | ||
Bulk density | Ring blade method |
Table 3 Measurement methods of indices for soil physiochemical properties
Observation index | Abbreviation | Measurement method | References |
---|---|---|---|
Soil organic carbon | TOC | Walkley-Black method | Bremmer and Mulvaney, 1982 |
Total carbon | TC | Kjeldahl digestion method | |
pH | pH | pH meter method | |
Total nitrogen | TN | Kjeldahl digestion method | |
Total phosphorus | P | Ammonium molybdate method | |
Available potassium | K | NH4OAc digestion | |
Content of gravel | Gravel | Pipette method | |
Content of coarse sand | CS | Pipette method | |
Content of fine sand | FS | Pipette method | |
Content of silt | Silt | Pipette method | |
Content of clay | Clay | Pipette method | |
Water content | Oven drying method | ||
Bulk density | Ring blade method |
Functional region | TOC (g kg-1) | SOCdensity (kg m-2) | Variation coefficient of SOCdensity (%) |
---|---|---|---|
CFCA | 5.74b | 0.82b | 68.11 |
UFEZ | 1.87a | 0.29a | 93.64 |
UDNZ | 7.01b | 0.92b | 35.11 |
ECA | 5.33b | 0.88b | 69.29 |
Total | 4.99 | 0.77 | 83.80 |
Table 4 Duncan’s multiple comparison of TOC and SOCdensity in different functional regions
Functional region | TOC (g kg-1) | SOCdensity (kg m-2) | Variation coefficient of SOCdensity (%) |
---|---|---|---|
CFCA | 5.74b | 0.82b | 68.11 |
UFEZ | 1.87a | 0.29a | 93.64 |
UDNZ | 7.01b | 0.92b | 35.11 |
ECA | 5.33b | 0.88b | 69.29 |
Total | 4.99 | 0.77 | 83.80 |
Functional region | Park | Roadside | Residential | Farmland | Woodland | Other |
---|---|---|---|---|---|---|
CFCA | 0.57a | 0.82a | 1.06a | 0.67a | ||
UFEZ | 0.24 | 0.31a | 0.35a | 0.21 | 0.79 | 0.18a |
UDNZ | 0.76 | 0.94a | 0.50a | 0.63a | 1.07a | 1.16a |
ECA | 0.81a | 1.11a | 0.86a | 0.91a | 0.87a | 0.84a |
Total | 0.65a | 0.79a | 0.72a | 0.80a | 0.94a | 0.54a |
Table 5 Duncan’s multiple comparison of SOCdensity in different functional regions by land uses
Functional region | Park | Roadside | Residential | Farmland | Woodland | Other |
---|---|---|---|---|---|---|
CFCA | 0.57a | 0.82a | 1.06a | 0.67a | ||
UFEZ | 0.24 | 0.31a | 0.35a | 0.21 | 0.79 | 0.18a |
UDNZ | 0.76 | 0.94a | 0.50a | 0.63a | 1.07a | 1.16a |
ECA | 0.81a | 1.11a | 0.86a | 0.91a | 0.87a | 0.84a |
Total | 0.65a | 0.79a | 0.72a | 0.80a | 0.94a | 0.54a |
Fig. 3 Box plots of SOCdensity in functional regions by land use Note: a/b displays whether the values significantly differ from others, which was calculated using Duncan’s multiple comparison test in ANOVA in SPSS 19.0.
Region | TC (%) | TN (g kg-1) | C/N | P (mg kg-1) | K (mg kg-1) | pH | CS (%) | FS (%) | Silt (%) | Clay (%) | Water content (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
CFCA | 0.22 | 0.15 | 0.04 | 0.55** | 0.05 | -0.65** | 0.29 | -0.36 | -0.26 | 0.05 | -0.26 |
UFEZ | 0.19 | -0.35 | -0.41* | 0.23 | -0.10 | -0.37 | -0.49* | 0.35 | 0.42* | 0.30 | -0.03 |
UDNZ | 0.32* | 0.44* | -0.09 | 0.75** | 0.39* | -0.21 | -0.07 | 0.11 | -0.26 | -0.15 | -0.28 |
ECA | -0.33* | -0.07 | -0.27 | 0.42** | 0.27 | -0.37* | 0.31* | -0.53** | -0.15 | 0.19 | 0.05 |
Total | -0.02 | 0.12 | -0.13 | 0.49** | 0.18* | -0.11 | 0.10 | -0.18* | -0.15 | 0.01 | -0.22* |
Table 6 The Pearson correlation coefficients between SOCdensity and soil physiochemical properties
Region | TC (%) | TN (g kg-1) | C/N | P (mg kg-1) | K (mg kg-1) | pH | CS (%) | FS (%) | Silt (%) | Clay (%) | Water content (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
CFCA | 0.22 | 0.15 | 0.04 | 0.55** | 0.05 | -0.65** | 0.29 | -0.36 | -0.26 | 0.05 | -0.26 |
UFEZ | 0.19 | -0.35 | -0.41* | 0.23 | -0.10 | -0.37 | -0.49* | 0.35 | 0.42* | 0.30 | -0.03 |
UDNZ | 0.32* | 0.44* | -0.09 | 0.75** | 0.39* | -0.21 | -0.07 | 0.11 | -0.26 | -0.15 | -0.28 |
ECA | -0.33* | -0.07 | -0.27 | 0.42** | 0.27 | -0.37* | 0.31* | -0.53** | -0.15 | 0.19 | 0.05 |
Total | -0.02 | 0.12 | -0.13 | 0.49** | 0.18* | -0.11 | 0.10 | -0.18* | -0.15 | 0.01 | -0.22* |
Urbanization indicator | Population density | Economic density | Urbanization rate |
---|---|---|---|
SOCdensity | -0.15 | 0.11 | 0.43** |
Table 7 The Pearson correlation coefficients between SOCdensity and urbanization indicators
Urbanization indicator | Population density | Economic density | Urbanization rate |
---|---|---|---|
SOCdensity | -0.15 | 0.11 | 0.43** |
Plant configuration | Grass | Shrub+ grass | Tree | Tree+ grass | Tree+shrub+ grass |
---|---|---|---|---|---|
SOCdensity | 2.42ab | 1.72a | 2.50b | 2.65b | 2.84b |
Table 8 Duncan’s multiple comparison of SOCdensity in different plant configurations
Plant configuration | Grass | Shrub+ grass | Tree | Tree+ grass | Tree+shrub+ grass |
---|---|---|---|---|---|
SOCdensity | 2.42ab | 1.72a | 2.50b | 2.65b | 2.84b |
1 | Anderson J M, Ingram J S I . 1993. Tropical soil biology and fertility: A Handbook of Methods. Wallingford, USA: CAB International. |
2 | Baver L D, Gardner W H, Gardner W R. 1972. Soil physics. New York, USA: John Wiley and Sons Press. |
3 | Bouwman A F. 1990. Global Distribution of the major soils and land cover types. New York, USA: John Wiley and Sons Press. |
4 | Bremmer J M, Mulvaney C S. 1982. Nitrogen total. In: Page A L (ed.). Methods of soil analysis. Part 2. Chemical and microbiological properties. Wisconsin: American Society of Agronomy& Soil Science Society of America, 595-624. |
5 | Chen F, Zhu D J . 2009. Theory of research on low-carbon city and Shanghai empirical analysis. Urban Studies, 16(10):71-79. (in Chinese) |
6 | Chen H, Zhang W, Gilliam F , et al. 2013. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of Southern China. Biogeosciences, 10:6609-6616. |
7 | Chenery H, Robinson S, Syrquin M. 1986. Industrialization and growth: A comparative study. New York, USA: Oxford University Press, 387. |
8 | Duan X W, Rong L, Hu J M , et al. 2014. Soil organic carbon stocks in the Yunnan Plateau, southwest China: Spatial variations and environmental controls. Journal of Soils & Sediments, 14:1643-1658. |
9 | Freyerová K, Šefrna L . 2014. Soil organic carbon density and storage in podzols: A case study from Ralsko region (Czech Republic). AUC Geographica, 49(2):65-72. |
10 | Golubiewski N E . 2006. Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s front range. Ecological Application, 16(2):555-571. |
11 | Huang Q R, Hu F, Huang S , et al. 2009. Effect of long-term fertilization on organic carbon and nitrogen in a subtropical paddy soil. Pedosphere, 19(6):727-734. |
12 | Hyvonen R, Persson T, Andersson S , et al. 2008. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry, 89:121-137. |
13 | Jastrow J D, Miller R M, Matamala R , et al. 2005. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology, 11:2057-2064. |
14 | Jin F, Yang H, Zhao Q G . 2000. Research progress on soil carbon storage and its factors. Soil, 32(1):11-17. (in Chinese) |
15 | Koerner A B, Klopatek M J . 2010. Carbon fluxes and nitrogen availability along an urban-rural gradient in a desert landscape. Urban Ecosystems, 13:1-21. |
16 |
Li Y, Chen L, Wen H . 2015. Changes in the composition and diversity of bacterial communities 13 years after soil reclamation of abandoned mine land in eastern China. Ecological Research, 30(2):357-366.
DOI URL |
17 | Li Z, Sun B, Lin X X . 2001. Density of soil organic carbon and the factors controlling its turnover in east China. Scientia Geographica Sinica, 21(4):301-307. (in Chinese) |
18 | Luo S, Mao Q, Ma K . 2014. Comparison on soil carbon stocks between urban and suburban topsoil in Beijing, China. Chinese Geographical Science, 24(5):551-561. |
19 | Piao S L, Fang J Y, Ciais P , et al. 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458:1009-1013. |
20 | Pouyat R V, Groffman P, Yesilonsic I L . 2002. Soil carbon pools and fluxes in urban ecosystems. Environment Pollution, 116:107-118. |
21 |
Pouyat R V, Yesilonis I D . 2008. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystem, 12(1):45-62.
DOI URL |
22 | Pouyat R V, Yesilonis I D, Russellanelli J , et al. 2007. Soil chemical and physical properties that differentiate urban land-use and cover types. Soilence Society of America Journal, 71(3):1010-1019. |
23 | Pregitzer K S, Burton A J, Zak D R , et al. 2010. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Global Change Biology, 14:142-153. |
24 |
Raciti S M, Groffman P M, Jenkins H C . 2011. Accumulation of carbon and nitrogen in residential soils with different land-use histories. Ecosystems, 14(2):287-297.
DOI URL |
25 |
Schaldach R, Alcamo J , 2007. Simulating the effects of urbanization, afforestration and cropland abandonment on a regional carbon balance: A case study for Central Germany. Regional Environmental Change, 7:137-148.
DOI URL |
26 | SCS-USDA(Soil Conservation Service-U. S. Department of Agriculture). 1972. National engineering handbook. Washington D C:USDA. |
27 |
Seto K C, Güneralp B, Hutyra L R . 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of USA, 109(40):16083-16088.
DOI URL |
28 | The Census Office of the State Council of China. 2010. Tabulation on the 2010 Population Census of the People’s Republic of China. Beijing, China: Chinese Statistics Press. (in Chinese) |
29 | Thomas G W. 1996. Soil pH and soil acidity. In: Sparks D L (ed.). Methods of soil analysis. Part 3. Chemical methods. Madison, USA: Soil Science Society of America, 475-490. |
30 | Tong C, Dong Y . 2007. Characteristics of soil carbon pool in urban ecosystem. Chinese Journal of Ecology, 26(10):1616-1621. (in Chinese) |
31 |
Vasenev V I, Stoorvogel J J, Vasenev I I . 2013. Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region. Catena, 107(4):96-102.
DOI URL |
32 | Xiao Y, Liu S H . 2014. SOC content and its spatial distribution characteristics in urban forest ecosystems of Changsha in China. Information Technology and Agricultural Engineering, 134:95-106. |
33 | Yesilonis I D, Pouyat R V. 2012. Carbon stocks in urban forest remnants: Atlanta and Baltimore as case studies, In: Lai R, Agustin B (eds.). Carbon sequestration in urban ecosystems. Dordrecht, the Netherlands: Springer Press, 102-112. |
[1] | WANG Yajun. Relationship between Industrialization, Urbanization and Industrial Ecology in Western China: A Panel Vector Auto-Regression Model Analysis [J]. Journal of Resources and Ecology, 2021, 12(1): 68-79. |
[2] | LU Chunxia, LIU Aimin, XIAO Yu, LIU Xiaojie, XIE Gaodi, CHENG Shengkui. Changes in China’s Grain Production Pattern and the Effects of Urbanization and Dietary Structure [J]. Journal of Resources and Ecology, 2020, 11(4): 358-365. |
[3] | WANG Chunyu,SUN Xiaofang,WANG Meng,WANG Junbang,DING Qingfu. Chinese Cropland Quality and Its Temporal and Spatial Changes due to Urbanization in 2000-2015 [J]. Journal of Resources and Ecology, 2019, 10(2): 174-183. |
[4] | TIAN Wenju, XU Zheng. Study of Factors Affecting Carbon Emissions— Based on an Empirical Analysis of ASEAN [J]. Journal of Resources and Ecology, 2018, 9(5): 500-507. |
[5] | SHI Yuanyuan, MIN Qingwen, HE Lu, FULLER Anthony M.. Agricultural Heritage Systems: A Bridge between Urban and Rural Development [J]. Journal of Resources and Ecology, 2016, 7(3): 187-196. |
[6] | LI Jun, DONG Suocheng, LI Zehong, WAN Yongkun, MAO Qiliang, HUANG Yongbing, WANG Fei. A Bibliometric Analysis of Chinese Ecological and Environmental Research on Urbanization [J]. Journal of Resources and Ecology, 2014, 5(3): 211-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||