Journal of Resources and Ecology ›› 2020, Vol. 11 ›› Issue (5): 454-465.DOI: 10.5814/j.issn.1674-764x.2020.05.003
• Forest Ecosystem • Previous Articles Next Articles
GAO Wei1,2,3,4, LIN Meimei5, HUANG Yongrong3, HUANG Shide3, YE Gongfu3, HUANG Zhiqun1,2,*()
Received:
2020-03-15
Accepted:
2020-05-21
Online:
2020-09-30
Published:
2020-09-30
Contact:
HUANG Zhiqun
Supported by:
GAO Wei, LIN Meimei, HUANG Yongrong, HUANG Shide, YE Gongfu, HUANG Zhiqun. Effects of Forest Types and Environmental Factors on Soil Microbial Biomass in a Coastal Sand Dune of Subtropical China[J]. Journal of Resources and Ecology, 2020, 11(5): 454-465.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764x.2020.05.003
Variable | Eucalyptus | Pine | Acacia | Casuarinas | Secondary forest |
---|---|---|---|---|---|
Stand age (yr) | 11 | 21 | 22 | 22 | >50 |
Forest average DBH (cm) | 15.60 | 21.00 | 21.10 | 17.90 | 9.70 |
Mean tree height (m) | 11.40 | 13.90 | 12.50 | 14.90 | 5.60 |
Tree density (ind ha-1) | 1300 | 1500 | 950 | 1600 | 1400 |
Litterfall (mg ha-1 yr-1) | 12.32ab | 12.99a | 10.06b | 10.08b | 12.67a |
Litter C (g kg-1) | 473.40bc | 499.70ab | 513.60a | 497.70ab | 495.80c |
Litter N (g kg-1) | 9.21c | 6.58d | 15.10b | 8.83c | 16.41a |
Litter C:N ratio | 51.55b | 77.12a | 34.07c | 56.43b | 28.05c |
Litter cellulose (g kg-1) | 114.80d | 217.90b | 172.10c | 275.20a | 157.40c |
Litter lignin (g kg-1) | 179.90e | 365.90b | 449.30a | 227.50d | 300.60c |
Litter lignin: N ratio | 19.60c | 56.50a | 29.80b | 25.80b | 18.30c |
Root Biomass (mg ha-1) | 2.16ab | 1.05b | 1.84ab | 3.04a | 2.77a |
Root C (g kg-1) | 376.40ab | 365.10b | 304.80c | 412.70a | 378.00ab |
Root N (g kg-1) | 5.70c | 6.30c | 10.50b | 19.70a | 19.20a |
Root C: N ratio | 69.90a | 63.50a | 29.00b | 20.90b | 19.80b |
Bulk density (g cm-3) | 1.36b | 1.23cd | 1.28bc | 1.45a | 1.17d |
pH | 5.00b | 4.65c | 4.73c | 4.71c | 6.57a |
Total C (g kg-1) | 6.65b | 4.33b | 4.08b | 3.17b | 12.71a |
Total N (g kg-1) | 0.54b | 0.53bc | 0.53bc | 0.27c | 1.26a |
Soil C: N ratio | 11.97a | 8.12b | 7.70b | 11.58a | 9.91ab |
Soil NH4+-N concentration (μg g-1) | 3.52c | 3.78c | 6.27b | 4.38c | 7.00a |
Soil NO3--N concentration (μg g-1) | 0.20b | 1.14b | 1.47b | 0.87b | 18.20a |
Total inorganic N (μg g-1) | 2.30b | 3.90b | 6.50b | 3.10b | 25.80a |
Soil DOC (mg kg-1) | 56.20b | 40.40b | 42.20b | 53.30b | 84.80a |
Soil DON (mg kg-1) | 2.80bc | 3.30bc | 6.80b | 0.60c | 22.5a0 |
Available P (mg kg-1) | 0.57b | 0.61b | 1.26b | 0.89b | 20.49a |
Exchangeable Mg (mg kg-1) | 0.28b | 0.33b | 0.26b | 0.32b | 0.71a |
Table 1 Detailed site characteristics and topsoil properties of the five forest stands on the southeastern coast of China
Variable | Eucalyptus | Pine | Acacia | Casuarinas | Secondary forest |
---|---|---|---|---|---|
Stand age (yr) | 11 | 21 | 22 | 22 | >50 |
Forest average DBH (cm) | 15.60 | 21.00 | 21.10 | 17.90 | 9.70 |
Mean tree height (m) | 11.40 | 13.90 | 12.50 | 14.90 | 5.60 |
Tree density (ind ha-1) | 1300 | 1500 | 950 | 1600 | 1400 |
Litterfall (mg ha-1 yr-1) | 12.32ab | 12.99a | 10.06b | 10.08b | 12.67a |
Litter C (g kg-1) | 473.40bc | 499.70ab | 513.60a | 497.70ab | 495.80c |
Litter N (g kg-1) | 9.21c | 6.58d | 15.10b | 8.83c | 16.41a |
Litter C:N ratio | 51.55b | 77.12a | 34.07c | 56.43b | 28.05c |
Litter cellulose (g kg-1) | 114.80d | 217.90b | 172.10c | 275.20a | 157.40c |
Litter lignin (g kg-1) | 179.90e | 365.90b | 449.30a | 227.50d | 300.60c |
Litter lignin: N ratio | 19.60c | 56.50a | 29.80b | 25.80b | 18.30c |
Root Biomass (mg ha-1) | 2.16ab | 1.05b | 1.84ab | 3.04a | 2.77a |
Root C (g kg-1) | 376.40ab | 365.10b | 304.80c | 412.70a | 378.00ab |
Root N (g kg-1) | 5.70c | 6.30c | 10.50b | 19.70a | 19.20a |
Root C: N ratio | 69.90a | 63.50a | 29.00b | 20.90b | 19.80b |
Bulk density (g cm-3) | 1.36b | 1.23cd | 1.28bc | 1.45a | 1.17d |
pH | 5.00b | 4.65c | 4.73c | 4.71c | 6.57a |
Total C (g kg-1) | 6.65b | 4.33b | 4.08b | 3.17b | 12.71a |
Total N (g kg-1) | 0.54b | 0.53bc | 0.53bc | 0.27c | 1.26a |
Soil C: N ratio | 11.97a | 8.12b | 7.70b | 11.58a | 9.91ab |
Soil NH4+-N concentration (μg g-1) | 3.52c | 3.78c | 6.27b | 4.38c | 7.00a |
Soil NO3--N concentration (μg g-1) | 0.20b | 1.14b | 1.47b | 0.87b | 18.20a |
Total inorganic N (μg g-1) | 2.30b | 3.90b | 6.50b | 3.10b | 25.80a |
Soil DOC (mg kg-1) | 56.20b | 40.40b | 42.20b | 53.30b | 84.80a |
Soil DON (mg kg-1) | 2.80bc | 3.30bc | 6.80b | 0.60c | 22.5a0 |
Available P (mg kg-1) | 0.57b | 0.61b | 1.26b | 0.89b | 20.49a |
Exchangeable Mg (mg kg-1) | 0.28b | 0.33b | 0.26b | 0.32b | 0.71a |
Soil depth (cm) | Forest types | Soil pH | Bulk density (g cm-3) | Soil C content (g kg-1) | Soil N content (g kg-1) | Soil C: N |
---|---|---|---|---|---|---|
0-10 | Eucalyptus | 5.00±0.08b | 1.36±0.04b | 6.65±2.67b | 0.54±0.09b | 11.97±2.91a |
Pine | 4.65±0.13c | 1.23±0.06cd | 4.33±1.21b | 0.53±0.04bc | 8.12±1.80b | |
Acacia | 4.73±0.12c | 1.28±0.10bc | 4.08±0.35b | 0.53±0.05bc | 7.7±0.08b | |
Casuarinas | 4.71±0.08c | 1.45±0.04a | 3.17±0.69b | 0.27±0.05c | 11.58±1.08a | |
Secondary forest | 6.57±0.22a | 1.17±0.04d | 12.71±4.94a | 1.26±0.34a | 9.91±1.23ab | |
10-20 | Eucalyptus | 4.71±0.18b | 1.47±0.04a | 1.85±0.34b | 0.31±0.07b | 6.16±0.91a |
Pine | 4.72±0.19b | 1.43±0.02a | 1.96±0.51b | 0.31±0.02b | 6.32±1.50a | |
Acacia | 4.76±0.09b | 1.39±0.09a | 1.68±0.13b | 0.31±0.03b | 5.46±0.30a | |
Casuarinas | 4.92±0.05b | 1.47±0.04a | 1.25±0.22b | 0.14±0.02c | 9.27±1.26a | |
Secondary forest | 6.50±0.69a | 1.31±0.02b | 4.57±0.93a | 0.54±0.09a | 8.44±1.15a |
Table 2 Soil pH, soil bulk density, soil C and N content, and soil C: N ratio for the different forests (N=4)
Soil depth (cm) | Forest types | Soil pH | Bulk density (g cm-3) | Soil C content (g kg-1) | Soil N content (g kg-1) | Soil C: N |
---|---|---|---|---|---|---|
0-10 | Eucalyptus | 5.00±0.08b | 1.36±0.04b | 6.65±2.67b | 0.54±0.09b | 11.97±2.91a |
Pine | 4.65±0.13c | 1.23±0.06cd | 4.33±1.21b | 0.53±0.04bc | 8.12±1.80b | |
Acacia | 4.73±0.12c | 1.28±0.10bc | 4.08±0.35b | 0.53±0.05bc | 7.7±0.08b | |
Casuarinas | 4.71±0.08c | 1.45±0.04a | 3.17±0.69b | 0.27±0.05c | 11.58±1.08a | |
Secondary forest | 6.57±0.22a | 1.17±0.04d | 12.71±4.94a | 1.26±0.34a | 9.91±1.23ab | |
10-20 | Eucalyptus | 4.71±0.18b | 1.47±0.04a | 1.85±0.34b | 0.31±0.07b | 6.16±0.91a |
Pine | 4.72±0.19b | 1.43±0.02a | 1.96±0.51b | 0.31±0.02b | 6.32±1.50a | |
Acacia | 4.76±0.09b | 1.39±0.09a | 1.68±0.13b | 0.31±0.03b | 5.46±0.30a | |
Casuarinas | 4.92±0.05b | 1.47±0.04a | 1.25±0.22b | 0.14±0.02c | 9.27±1.26a | |
Secondary forest | 6.50±0.69a | 1.31±0.02b | 4.57±0.93a | 0.54±0.09a | 8.44±1.15a |
Fig. 3 Seasonal variations of soil temperature and soil water content under different forest types Note: * significant difference at P<0.05; ** significant difference at P<0.01.
Fig. 5 Annual mean MBC and MBN contents under different forests Note: Different capital letters indicate significant differences between topsoil and subsoil under the same forest type, and different small letters indicate significant differences among different forests in the same soil layer, the same below.
Forest types | T—MBC | T—MBN | W—MBC | W—MBN | ||||
---|---|---|---|---|---|---|---|---|
0-10 cm | 10-20 cm | 0-10 cm | 10-20 cm | 0-10 cm | 10-20 cm | 0-10 cm | 10-20 cm | |
Eucalyptus | -0.216 | -0.007 | -0.421 | -0.937** | 0.388 | 0.170 | 0.346 | 0.760** |
Pine | -0.027 | -0.151 | -0.629** | -0.709** | 0.257 | 0.576* | 0.066 | 0.522* |
Acacia | -0.640** | -0.217 | -0.857** | -0.786** | 0.537* | 0.057 | 0.553* | 0.082 |
Casuarinas | -0.269 | -0.132 | -0.785** | -0.773** | 0.100 | 0.352 | 0.619* | 0.592* |
Secondary forest | -0.178 | -0.346 | -0.158 | -0.413 | 0.734** | 0.713** | 0.618* | 0.819** |
Table 3 Pearson correlations between seasonal variations of soil MBC and MBN and soil temperature as well as water content
Forest types | T—MBC | T—MBN | W—MBC | W—MBN | ||||
---|---|---|---|---|---|---|---|---|
0-10 cm | 10-20 cm | 0-10 cm | 10-20 cm | 0-10 cm | 10-20 cm | 0-10 cm | 10-20 cm | |
Eucalyptus | -0.216 | -0.007 | -0.421 | -0.937** | 0.388 | 0.170 | 0.346 | 0.760** |
Pine | -0.027 | -0.151 | -0.629** | -0.709** | 0.257 | 0.576* | 0.066 | 0.522* |
Acacia | -0.640** | -0.217 | -0.857** | -0.786** | 0.537* | 0.057 | 0.553* | 0.082 |
Casuarinas | -0.269 | -0.132 | -0.785** | -0.773** | 0.100 | 0.352 | 0.619* | 0.592* |
Secondary forest | -0.178 | -0.346 | -0.158 | -0.413 | 0.734** | 0.713** | 0.618* | 0.819** |
Soil depth (cm) | Variable | MBN | TC | TN | Bulk density | pH | Litterfall | Litter C | Litter N | Root biomass | Root C | Root N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | MBC | 0.750** | 0.697** | -0.030 | -0.609** | 0.899** | 0.202 | -0.500* | 0.651** | 0.301 | -0.388 | 0.326 |
MBN | 1 | 0.820** | -0.050 | -0.586** | 0.915** | 0.408 | -0.624** | 0.671** | 0.151 | -0.188 | 0.505* | |
10-20 | MBC | 0.855** | 0.904** | 0.274 | -0.585** | 0.787** | 0.474* | -0.459* | 0.447* | 0.113 | -0.453* | 0.178 |
MBN | 1 | 0.926** | -0.130 | -0.646** | 0.952** | 0.419 | -0.593** | 0.643** | 0.243 | -0.215 | 0.510* |
Table 4 Pearson correlations between soil MBC and MBN and properties of soil, litter and fine roots
Soil depth (cm) | Variable | MBN | TC | TN | Bulk density | pH | Litterfall | Litter C | Litter N | Root biomass | Root C | Root N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | MBC | 0.750** | 0.697** | -0.030 | -0.609** | 0.899** | 0.202 | -0.500* | 0.651** | 0.301 | -0.388 | 0.326 |
MBN | 1 | 0.820** | -0.050 | -0.586** | 0.915** | 0.408 | -0.624** | 0.671** | 0.151 | -0.188 | 0.505* | |
10-20 | MBC | 0.855** | 0.904** | 0.274 | -0.585** | 0.787** | 0.474* | -0.459* | 0.447* | 0.113 | -0.453* | 0.178 |
MBN | 1 | 0.926** | -0.130 | -0.646** | 0.952** | 0.419 | -0.593** | 0.643** | 0.243 | -0.215 | 0.510* |
1 |
Arancon N Q, Edwards C A, Bierman P . 2006. Influences of vermicomposts on field strawberries: Part 2. Effects on soil microbiological and chemical properties. Bioresource Technology, 97(6):831-840.
URL PMID |
2 |
Bachar A, Al-Ashhab A, Soares M I M , et al. 2010. Soil microbial abundance and diversity along a low precipitation gradient. Microbial Ecology, 60:453-461.
DOI URL PMID |
3 |
Bell C, McIntyre N, Cox S , et al. 2008. Soil microbial responses to temporal variations of moisture and temperature in a chihuahuan desert grassland. Microbial Ecology, 56:153-167.
DOI URL PMID |
4 | Bréchet L, Ponton S, Roy J , et al. 2009. Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots. Plant & Soil, 319:235-246. |
5 | Brookes P C, Landman A, Pruden G , et al. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17(6):837-842. |
6 | Camenzind T, Httenschwiler S, Treseder K K , et al. 2018. Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88(1):4-21. |
7 | Chang E H, Chen C T, Chen T H , et al. 2011. Soil microbial communities and activities in sand dunes of subtropical coastal forests. Applied Soil Ecology, 49:256-262. |
8 | Chen T H, Chiu C Y, Tian G . 2005. Seasonal dynamics of soil microbial biomass in coastal sand dune forest. Pedobiologia, 49(6):645-653. |
9 | Chodak M, Pietrzykowski M, Sroka K . 2015. Physiological profiles of microbial communities in mine soils afforested with different tree species. Ecological Engineering, 81:462-470. |
10 |
Clark J S, Campbell J H, Grizzle H , et al. 2009. Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microbial Ecology, 57:248-260.
URL PMID |
11 | Cregger M A, Schadt C W, Mcdowell N G , et al. 2012. Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Applied & Environmental Microbiology, 78:8587-8594. |
12 | Deng L, Shangguan Z P . 2017. Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development, 28:151-165. |
13 | Feng Y, Grogan P, Caporaso J G , et al. 2014. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils. Soil Biology & Biochemistry, 74:193-200. |
14 |
Forrester D I, Schortemeyer M, Stock W D , et al. 2007. Assessing nitrogen fixation in mixed-and single-species plantations of Eucalyptus globulus and Acacia mearnsii. Tree Physiology, 27(9):1319-1328.
DOI URL PMID |
15 | Gao W, Huang Z Q, Ye G F , et al. 2018. Effects of forest cover types and environmental factors on soil respiration dynamics in a coastal sand dune of subtropical China. Journal of Forestry Research, 29(6):1645-1655. |
16 | Harris R F. 1980. Effect of water potential on microbial growth and activity. In: Parr J F, Gardner W R, Elliott L F (eds.). Water potential relations in soil microbiology, Special publication no 9. Soil Science Society of America, Madison, Wisconsin, 23-96. |
17 | Hoogmoed M, Cunningham S C, Baker P J , et al. 2014. Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings? Agriculture Ecosystems & Environment, 188:80-84. |
18 | Hu S, Coleman D C, Carroll C R , et al. 1997. Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types. Agriculture Ecosystems & Environment, 65(1):69-78. |
19 | Jandl R, Lindner M, Vesterdal L , et al. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma, 137(3-4):253-268. |
20 | Joergensen R G, Müller T . 1996a. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biology & Biochemistry, 28(1):25-31. |
21 | Joergensen R G, Müller T . 1996b. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value. Soil Biology & Biochemistry, 28(1):33-37. |
22 | Karlen D L, Mausbach M J, Doran J W , et al. 1997. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 61:4-10. |
23 | Landesman W J, Nelson D M, Fitzpatrick M C . 2014. Soil properties and tree species drive ß-diversity of soil bacterial communities. Soil Biology & Biochemistry, 76:201-209. |
24 | Li S L, Fang X, Xiang W H , et al. 2014. Soil microbial biomass carbon and nitrogen concentrations in four subtropical forests in hilly region of central Hunan Province, China. Scientia Silvae Sinicae, 50(5):8-16. (in Chinese) |
25 | Liu C G, Jin Y Q, Hu Y N , et al. 2019. Drivers of soil bacterial community structure and diversity in tropical agroforestry systems. Agriculture Ecosystems & Environment, 278:24-34. |
26 | Liu S, Wang C K . 2010. Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems. Acta Ecologica Sinica, 30(12):3135-3143. (in Chinese) |
27 | Luan J W, Liu S R, Wang J X , et al. 2011. Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China. Soil Biology & Biochemistry, 43(3):503-512. |
28 | Manzoni S, Schimel J P, Porporato A . 2012. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology, 93(4):930-938. |
29 |
Mganga K Z, Razavi B S, Kuzyakov Y . 2015. Microbial and enzymes response to nutrient additions in soils of Mt. Kilimanjaro region depending on land use. European Journal of Soil Biology, 69:33-40.
DOI URL |
30 | Mueller K E, Eissenstat D M . 2012. Do evergreen and deciduous trees have different effects on net N mineralization in soil? Ecology, 93(6):1463-1472. |
31 | Nannipieri P, Ascher J, Ceccherini M T , et al. 2003. Microbial diversity and soil functions. European Journal of Soil Science, 54:655-670. |
32 | Pérez-Cruzado C, Mansilla-Salinero P, Rodríguez-Soalleiro R , et al. 2012. Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant & Soil, 353:333-353. |
33 | Parker S S, Schimel J P . 2011. Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Applied Soil Ecology, 48:185-192. |
34 | Paul K I, Polglase P J, Nyakuengama J G , et al. 2002. Change in soil carbon following afforestation. Forest Ecology & Management, 168:241-257. |
35 | Pearson H L, Vitousek P M . 2001. Stand dynamics, nitrogen accumulation, and symbiotic nitrogen fixation in regenerating stands of Acacia koa. Ecological Applications, 11(5):1381-1394. |
36 | Qiu S J, Ju X T, Ingwersen J , et al. 2010. Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production. Soil & Tillage Research, 107(2):80-87. |
37 | Resh S C, Binkley D, Parrotta J A . 2002. Greater soil carbon sequestration under nitrogen fixing trees compared with Eucalyptus species. Ecosystems, 5:217-231. |
38 | Sarathchandra S U, Perrott K W, Boase M R , et al. 1988. Seasonal changes and the effects of fertiliser on some chemical, biochemical and microbiological characteristics of high-producing pastoral soil. Biology & Fertility of Soils, 6:328-335. |
39 | Shen C C, Xiong J B, Zhang H Y , et al. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57:204-211. |
40 | Steinberger Y, Zelles L, Bai Q Y , et al. 1999. Phospholipid fatty acid profiles as indicators for the microbial community structure in soils along a climatic transect in the Judean Desert. Biology & Fertility of Soils, 28:292-300. |
41 | Tam P C F . 1994. Mycorrhizal associations in Pinus massoniana Lamb. and Pinus elliottii Engel. inoculated with Pisolithus tinctorius. Mycorrhiza, 4:255-263. |
42 | Templer P H, Dawson T E . 2004. Nitrogen uptake by four tree species of the Catskill Mountains, New York: Implications for forest N dynamics. Plant & Soil, 262:251-261. |
43 | Ussiri D A N, Lal R, Jacinthe P A . 2006. Soil properties and carbon sequestration of afforested pastures in reclaimed mine soils of Ohio. Soil Science Society of America Journal, 70(5):1797-1806. |
44 | Wang F M, Li Z A, Xia H P , et al. 2010. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Science & Plant Nutrition, 56:297-306. |
45 | Wang H, Liu S R, Wang J X , et al. 2013. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology & Management, 300:4-13. |
46 | Wang M H, Wan X H, Yu Z P , et al. 2016 a. Effects of tree species transition on soil microbial biomass and community structure in subtropical China. Acta Ecologica Sinica, 36:417-423. |
47 | Wang N, Yang X, Li S L et al. 2016 b. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean Pine mixed forests along elevation gradient. Scientia Silvae Sinicae, 52(1):150-158. (in Chinese) |
48 | Wardle D A . 2010. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67:321-358. |
49 | Xiao S S, Ye G F, Zhang L H , et al. 2009. Soil heterotrophic respiration in Casuarina equisetifolia plantation at different stand ages. Journal of Forestry Research, 20(4):301-306. |
50 | Xu H Q, Zhang J E, Feng L J , et al. 2009. Effects of different land use patterns on microbial biomass carbon and nitrogen in Guangdong Province. Acta Ecologica Sinica, 29(8):4112-4118. (in Chinese) |
51 | Yang K, Zhu J J, Zhang J X , et al. 2009. Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in Northeastern China. Acta Ecologica Sinica, 29(10):5500-5507. (in Chinese) |
52 | Yang Y S, Chen G S, Lin P , et al. 2004. Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China. Annals of Forest Science, 61:617-627. |
53 | Ye G F, Zhang S J, Zhang L H , et al. 2012. Age-related changes in nutrient resorption patterns and tannin concentration of Casuarina equisetifolia plantations. Journal of Tropical Forest Science, 24(4):546-556. |
54 |
Zhang N L, Liu W X, Yang H J , et al. 2013. Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. Oecologia, 173:1125-1142.
DOI URL |
55 |
Zhou X Q, Chen C R, Wang Y F , et al. 2013. Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland. Geoderma, 206:24-31.
DOI URL |
56 |
Zhu L X, Xiao Q, Cheng H Y , et al. 2017. Seasonal dynamics of soil microbial activity after biochar addition in a dryland maize field in North-Western China. Ecological Engineering, 104:141-149.
DOI URL |
57 | Zhu T H, Zhang J, Hu T X , et al. 2001. Mycorrhizae type associated with Eucalyptus in Sichuan and effect of forest density on mycorrhizal fungi. Journal of Sichuan Agricultural University, 19(3):222-224. (in Chinese) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||