[1] Almeida A C, Landsberg J L.2003. Evaluating methods of estimating global radiation and vapor pressure deficit using a dense network of automatic weather stations in coastal Brazil.Agricultural and Forest Meteorology, 118(3-4): 237-250. [2] Brutsaert W, Parlange M B.1998. Hydrologic cycle explains the evaporation paradox.Nature, 396(6706): 30-30. [3] Castellvi F, Perez P J, Villar J M, et al.1996. Analysis of methods for estimating vapor pressure deficits and relative humidity.Agricultural and Forest Meteorology, 82(1-4): 29-45. [4] Chen S Q, Lv S H, AO Y H, et al.2009. Characteristics of the radiation on snow cover at the margin of the Tibet Plateau.Journal of Glaciology and Geocryology, 31(5): 866-870. (in Chinese) [5] Chen S Y, Dong A X.2006. Climatic change and stabil ity of total cloud amount over the Qinghai-Tibetan Plateau.Arid Zone Research, 23(2): 327-333. (in Chinese) [6] Day M E.2000. Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens). Tree Physiology, 20(1): 57-63. [7] Ding M J, Zhang Y L, Liu L S, et al.2007. The relationship between NDVI and precipitation on the Tibetan Plateau.Journal of Geographical Sciences, 17(3): 259-268. [8] Dou K, Huang Y F, Ding Y Y, et al.2016. Response of ground surfacce temperature on climatic change in Heze City, Shandong Province from 1961 to 2013.Chinese Journal of Agricultural Resources and Regional Planning, 37(6): 63-69. (in Chinese) [9] Fu G, Li S W, Sun W, et al.2016. Relationships between vegetation carbon use efficiency and climatic factors on the Tibetan Plateau.Canadian Journal of Remote Sensing, 42(1): 16-26. [10] Fu G, Shen Z X.2015. Relationships between evapotranspiration and environmental temperature and humidity in an alpine meadow at three elevations in the Northern Tibet Plateau.Chinese Journal of Grassland, 37(3): 67-73. (in Chinese) [11] Hao L, Gu C, Zhao L.2015. Characteristic analysis on grass surface temperature, ground temperature and temperature variation in Lianyungang.Journal of Meteorological Research and Application, 36(4): 85-88. (in Chinese) [12] Hashimoto H, Dungan J L, White M A, et al.2008. Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data.Remote Sensing of Environment, 112(1): 142-155. [13] Hirasawa T, Hsiao T C.1999. Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field.Field Crops Research, 62(1): 53-62. [14] Hu H R, Liang L.2014. Temporal and spatial variations of snowfall in the east of Qinghai-Tibet Plateau in the last 50 years.Acta Geographica Sinica, 69(7): 1002-1012. (in Chinese) [15] Jiang H, Wang K L.2001. Analysis of the surface temperature on the Tibetan Plateau from satellite.Advances in Atmospheric Sciences, 18(6): 1215-1223. (in Chinese) [16] Jin H J, Sun L P, Wang S L, et al.2008. Dual influences of local environmental variables on ground temperatures on the Interior-Eastern Qinghai-Tibet Plateau (I): Vegetation and Snow Cover.Journal of Glaciology and Geocryology, 30(4): 535-545. (in Chinese) [17] Kattelmann R, Elder K.1991. Hydrologic characteristics and water-balance of an alpine basin in the Sierra-Nevada.Water Resources Research, 27(7): 1553-1562. [18] Kerchove R V D, Lhermitte S, Veraverbeke S, et al.2013. Spatio-temporal variability in remotely sensed land surface temperature, and its relationship with physiographic variables in the Russian Altay Mountains.International Journal of Applied Earth Observation & Geoinformation, 20(2): 4-19. [19] Lendzion J, Leuschner C.2009. Temperate forest herbs are adapted to high air humidity - evidence from climate chamber and humidity manipulation experiments in the field.Canadian Journal of Forest Research, 39(12): 2332-2342. [20] Ma L Y, Huang X D, Fang J, et al.2011. Temporal and spatial change of grassland vegetation index in Tibetan Plateau.Pratacultural Science, 28(6): 1106-1116. (in Chinese) [21] Penman H L.1948. Natural evaporation from open water, bare soil and grass.Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 193(1032): 120-146. [22] Prince S D, Goetz S J, Dubayah R O, et al.1998. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations: comparison with field observations.Journal of Hydrology, 212(1-4): 230-249. [23] Pu Z X, Xu L, Salomonson V V.2007. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophysical Research Letters, 34(6). doi: 10.1029/2006gl029262 [24] Reichstein M, Ciais P, Papale D, et al.2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis.Global Change Biology, 13(3): 634-651. [25] Rutter N, Essery R, Pomeroy J, et al.2009. Evaluation of forest snow processes models (SnowMIP2).Journal of Geophysical Research- Atmospheres, 114. doi:10.1029/2008jd011063 [26] Sahin M, Yildiz B Y, Senkal O, et al.2013. Estimation of the vapour pressure deficit using NOAA-AVHRR data.International Journal of Remote Sensing, 34(8): 2714-2729. [27] Shen S, Leptoukh G G.2011. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature.Environmental Research Letters, 6(4): 67-81. [28] Shen Z X, Fu G, Yu C Q, et al.2014. Relationship between the growing season maximum enhanced vegetation index and climatic factors on the Tibetan Plateau.Remote Sensing, 6(8): 6765-6789. [29] Song D M, Zhang Q, Yang X C, et al.2011. Spatial and temporal characteristics of MODIS vegetation index in the source region of three rivers on Qinghai-Tibet Plateau in China.Geographical Research, 30(11): 2067-2075. (in Chinese) [30] Sun D, Kafatos M.2007. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America.Geophysical Research Letters, 34(24): 497-507. [31] Sun J, Cheng G W, Li W P, et al.2013. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau.Remote Sensing, 5(4): 1894-1911. [32] Symonds M R E, Moussalli A.2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion.Behavioral Ecology and Sociobiology, 65(1): 13-21. [33] Wang S H, Sun W, Li S W, et al.2015. Interannual variation of the growing season maximum normalized difference vegetation index, MNDVI, and its relationship with climatic factors on the Tibetan Plateau.Polish Journal of Ecology, 63(3): 424-439. [34] Wherley B G, Sinclair T R.2009. Differential sensitivity of C3 and C4 turfgrass species to increasing atmospheric vapor pressure deficit.Environmental and Experimental Botany, 67(2): 372-376. [35] Woo M K, Marsh P.2005. Snow, frozen soils and permafrost hydrology in Canada, 1999-2002.Hydrological Processes, 19(1): 215-229. [36] Yao T D, Xie Z C, Wu X L, et al.1991. Climate change since little ice age recorded by Dunde ice cap.Science in China (Series B), 34(6): 760-767. [37] Yu G R, Zhang L M, Sun X M, et al.2008. Environmental controls over carbon exchange of three forest ecosystems in eastern China.Global Change Biology, 14(11): 2555-2571. [38] Zhang H M, Wu B F, Yan N N, et al.2014. An improved satellite-based approach for estimating vapor pressure deficit from MODIS data.Journal of Geophysical Research-Atmospheres, 119(21): 12256-12271. [39] Zhang Y S, Ishikawa M, Ohata T, et al.2008. Sublimation from thin snow cover at the edge of the Eurasian cryosphere in Mongolia.Hydrological Processes, 22(18): 3564-3575. [40] Zhong L, Ma Y M, Salama M S, et al.2010. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau.Climatic Change, 103(3-4): 519-535. [41] Zhuo G, La B, Pubu C, et al.2014. Study on daily surface evapotranspiration with SEBS in Tibet Autonomous Region.Journal of Geographical Sciences, 24(1): 113-128. |