Journal of Resources and Ecology ›› 2020, Vol. 11 ›› Issue (3): 298-303.DOI: 10.5814/j.issn.1674-764X.2020.03.007
• Rangeland Ecosystem Function and Management • Previous Articles Next Articles
WANG Jiangwei1,2, ZHANG Guangyu1,2, YU Chengqun1,*()
Received:
2019-12-12
Accepted:
2020-02-08
Online:
2020-05-30
Published:
2020-06-16
Contact:
YU Chengqun
About author:
WANG Jiangwei, E-mail: wangjw.15s@igsnrr.ac.cn
Supported by:
WANG Jiangwei, ZHANG Guangyu, YU Chengqun. A Meta-analysis of the Effects of Organic and Inorganic Fertilizers on the Soil Microbial Community[J]. Journal of Resources and Ecology, 2020, 11(3): 298-303.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764X.2020.03.007
Fig. 1 Effect sizes of nitrogen (N), phosphorus (P), nitrogen+phosphorus (NP), phosphorus+potassium (PK), nitrogen+phosphorus+potassium (NPK), organic fertilizers (OF), and organic fertilizers + NPK (OF+NPK) on soil total PLFA. The error bars indicate effect sizes and 95% bootstrap confidence intervals. The effect was statistically significant if the 95%CI did not bracket zero. The dashed line is drawn at effect size = 0. The sample size for each variable is shown next to the bar.
Fig. 2 Effect sizes of nitrogen (N), phosphorus (P), nitrogen+ phosphorus (NP), nitrogen+phosphorus+potassium (NPK), organic fertilizers (OF), and organic fertilizers+NPK (OF+ NPK) on soil (a) fungi, (b) bacteria and (c) actinomycetes. The error bars indicate effect sizes and 95% bootstrap confidence intervals. The effect was statistically significant if the 95%CI did not bracket zero. The dashed lines are drawn at effect size = 0. The sample size for each variable is shown next to the bar.
Fig. 3 Effect sizes of nitrogen (N), phosphorus (P), nitrogen+phosphorus (NP), nitrogen+phosphorus+potassium (NPK) and organic fertilizers (OF) on soil (a) gram-positive bacteria, and (b) gram-negative bacteria. The error bars indicate effect sizes and 95% bootstrap confidence intervals. The effect was statistically significant if the 95%CI did not bracket zero. The dashed lines are drawn at effect size = 0. The sample size for each variable is shown next to the bar.
Fig. 4 Effect sizes of nitrogen (N), phosphorus (P), nitrogen+phosphorus (NP), and nitrogen+phosphorus+potassium (NPK) on the ratio of soil fungi to bacteria (F/B ratio). The error bars indicate effect sizes and 95% bootstrap confidence intervals. The effect was statistically significant if the 95%CI did not bracket zero. The dashed line is drawn at effect size = 0. The sample size for each variable is shown next to the bar.
Fig. 5 Effect sizes of nitrogen (N) on PLFA, fungi, bacteria, actinomycetes, gram-positive bacteria (G+) and gram-negative bacteria (G-) in (a) forest (b) grassland and (c) cropland. The error bars indicate effect sizes and 95% bootstrap confidence intervals. The effect was statistically significant if the 95%CI did not bracket zero. The dashed lines are drawn at effect size = 0. The sample size for each variable is shown next to the bar.
Fig. 6 Effect sizes of (a) ammonium nitrate and (b) urea on PLFA, fungi, bacteria, actinomycetes, gram-positive bacteria (G+) and gram-negative bacteria (G-). The error bars indicate effect sizes and 95% bootstrap confidence intervals. The effect was statistically significant if the 95%CI did not bracket zero. The dashed lines are drawn at effect size = 0. The sample size for each variable is shown next to the bar.
Variables | Slope | P | n | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Latitude | |||||||||||
PLFA | 0.012 | 0.155 | 34 | ||||||||
Fungi | 0.007 | 0.575 | 30 | ||||||||
Bacteria | 0.006 | 0.477 | 26 | ||||||||
G- | -0.003 | 0.812 | 22 | ||||||||
Longitude | |||||||||||
PLFA | -0.002 | 0.090 | 34 | ||||||||
Fungi | -0.001 | 0.492 | 30 | ||||||||
Bacteria | -0.001 | 0.466 | 26 | ||||||||
G- | -0.0010 | 0.439 | 22 | ||||||||
MAT | |||||||||||
PLFA | 0.018 | 0.183 | 23 | ||||||||
Fungi | 0.018 | 0.296 | 22 | ||||||||
MAP | |||||||||||
PLFA | 0.000 | 0.531 | 28 | ||||||||
Fungi | 0.000 | 0.885 | 27 | ||||||||
Bacteria | 0.000 | 0.907 | 23 | ||||||||
G- | 0.000 | 0.361 | 21 | ||||||||
Nitrogen addition rate | |||||||||||
PLFA | 0.001 | 0.153 | 31 | ||||||||
Fungi | 0.001 | 0.090 | 32 | ||||||||
Bacteria | 0.001 | 0.051 | 28 | ||||||||
Actinomycetes | 0.001 | 0.392 | 22 | ||||||||
G+ | 0.002 | 0.015 | 22 | ||||||||
G- | 0.002 | 0.001 | 24 | ||||||||
F/B ratio | 0.000 | 0.513 | 21 | ||||||||
Nitrogen load | |||||||||||
Fungi | 0.000 | 0.425 | 21 | ||||||||
Nitrogen duration | |||||||||||
PLFA | -0.0001 | 0.906 | 30 | ||||||||
Fungi | 0.0002 | 0.841 | 26 | ||||||||
Bacteria | 0.0005 | 0.524 | 22 | ||||||||
G- | 0.0006 | 0.434 | 21 |
Table 1 Relationships between the effect sizes of nitrogen addition on microbial indicators (total PLFA, fungi, bacteria, actinomycetes, G+, G-, and F/B ratio), and experimental variables (latitude, longitude, MAT, MAP, nitrogen addition rate, nitrogen load, and nitrogen addition duration) based on a random effects model with a continuous variable meta- analysis.
Variables | Slope | P | n | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Latitude | |||||||||||
PLFA | 0.012 | 0.155 | 34 | ||||||||
Fungi | 0.007 | 0.575 | 30 | ||||||||
Bacteria | 0.006 | 0.477 | 26 | ||||||||
G- | -0.003 | 0.812 | 22 | ||||||||
Longitude | |||||||||||
PLFA | -0.002 | 0.090 | 34 | ||||||||
Fungi | -0.001 | 0.492 | 30 | ||||||||
Bacteria | -0.001 | 0.466 | 26 | ||||||||
G- | -0.0010 | 0.439 | 22 | ||||||||
MAT | |||||||||||
PLFA | 0.018 | 0.183 | 23 | ||||||||
Fungi | 0.018 | 0.296 | 22 | ||||||||
MAP | |||||||||||
PLFA | 0.000 | 0.531 | 28 | ||||||||
Fungi | 0.000 | 0.885 | 27 | ||||||||
Bacteria | 0.000 | 0.907 | 23 | ||||||||
G- | 0.000 | 0.361 | 21 | ||||||||
Nitrogen addition rate | |||||||||||
PLFA | 0.001 | 0.153 | 31 | ||||||||
Fungi | 0.001 | 0.090 | 32 | ||||||||
Bacteria | 0.001 | 0.051 | 28 | ||||||||
Actinomycetes | 0.001 | 0.392 | 22 | ||||||||
G+ | 0.002 | 0.015 | 22 | ||||||||
G- | 0.002 | 0.001 | 24 | ||||||||
F/B ratio | 0.000 | 0.513 | 21 | ||||||||
Nitrogen load | |||||||||||
Fungi | 0.000 | 0.425 | 21 | ||||||||
Nitrogen duration | |||||||||||
PLFA | -0.0001 | 0.906 | 30 | ||||||||
Fungi | 0.0002 | 0.841 | 26 | ||||||||
Bacteria | 0.0005 | 0.524 | 22 | ||||||||
G- | 0.0006 | 0.434 | 21 |
1 |
Bai E, Li S L, Xu W H . 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199(2):441-451.
DOI URL |
2 | Bai Z, Zhang M, Yan Y , et al. 2008. Effect of long-term fertilization of nitrogen, phosphorus and organic fertilizer on PLFA in Chinese arable mollisol. Journal of Zhejiang University: Agriculture and Life Science, 34(1):73-80. (in Chinese) |
3 |
Bardgett R D, Freeman C, Ostle N J . 2008. Microbial contributions to climate change through carbon cycle feedbacks. ISME Journal, 2(8):805-814.
DOI URL |
4 |
Birgander J, Rousk J, Olsson P A . 2014. Comparison of fertility and seasonal effects on grassland microbial communities. Soil Biology and Biochemistry, 76:80-89.
DOI URL |
5 |
Crowther T W, Boddy L, Jones T H . 2012. Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME Journal, 6(11):1992-2001.
DOI URL |
6 |
Dong W Y, Zhang X Y, Dai X Q . 2014. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Applied Soil Ecology, 84:140-147.
DOI URL |
7 | Fu G, Shen Z X . 2016. Response of alpine plants to nitrogen addition on the Tibetan Plateau: A meta-analysis. Journal of Plant Growth Regulation, 35(4):974-979. |
8 | Fu G, Shen Z X . 2017a. Effects of enhanced UV-B radiation on plant physiology and growth on the Tibetan Plateau: A meta-analysis. Acta Physiologiae Plantarum, 39(3). DOI: 10.1007/s11738-017-2387-8. |
9 | Fu G, Shen Z X . 2017b. Grazing alters soil microbial community in alpine grasslands of the Northern Tibet. Acta Aprataculturae Sinica, 26(10):170-178. (in Chinese) |
10 | Fu G, Shen Z X . 2017c. Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis. Applied Soil Ecology, 114:99-104. |
11 |
Fu G, Shen Z X, Sun W , et al. 2015. A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. Journal of Plant Growth Regulation, 34(1):57-65.
DOI URL |
12 |
Fu, G, Shen Z X, Zhang X Z . 2011. Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecologica Sinica, 31(1):8-13. (in Chinese)
DOI URL |
13 | Fu G, Shen Z X, Zhang X Z , et al. 2012a. Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau. Applied Soil Ecology, 61(SI):158-160. |
14 | Fu G, Shen Z X, Zhang X Z , et al. 2012b. Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau. European Journal of Soil Biology, 52:27-29. |
15 | Fu G, Sun W, Li S , et al. 2019a. Response of microbial communities in soil to multi-level warming in a highland barley system of the Lhasa River. Journal of Resources and Ecology, 10(4):373-378. |
16 | Fu G, Zhang H R, Li S W , et al. 2019b. A meta-analysis of the effects of warming and elevated CO2 on soil microbes. Journal of Resources and Ecology, 10(1):69-76. |
17 | Fu G, Zhang H R, Sun W . 2019c. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the Northern Tibetan Plateau. Science of the Total Environment, 650:2666-2673. |
18 | Hedges L V, Gurevitch J, Curtis P S . 1999. The meta-analysis of response ratios in experimental ecology. Ecology, 80(4):1150-1156. |
19 | Joergensen R G, Emmerling C . 2010. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. Journal of Plant Nutrition & Soil Science, 169(3):295-309. |
20 | Li Y J, Chen X, Shamsi I H , et al. 2012. Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil. Pedosphere, 22(5):661-672. |
21 | Lovell R D, Jarvis S C, Bardgett R D . 1995. Soil microbial biomass and activity in long-term grassland: Effects of management changes. Soil Biology & Biochemistry, 27(7):969-975. |
22 | Meidute S, Demoling F, Bååth E . 2008. Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry, 40(9):2334-2343. |
23 | Moscatelli M C, Lagomarsino A, Marinari S , et al. 2005. Soil microbial indices as bioindicators of environmental changes in a poplar plantation. Ecological Indicators, 5(3):171-179. |
24 | Naoise N, Brajesh S, Eileen R , et al. 2006. Sheep-urine-induced changes in soil microbial community structure. Fems Microbiology Ecology, 56(2):310-320. |
25 | Rosenberg M S, Adams D C, Gurevitch J . 2000. Meta win: Statistical software for meta-analysis. Version 2. Sinauer Associates, Sunderland, Massachusetts, USA. |
26 | Treseder K K . 2008. Nitrogen additions and microbial biomass: A meta- analysis of ecosystem studies. Ecology Letters, 11(10):1111-1120. |
27 |
Wang S H, Sun W, Li S W , et al. 2015. Interannual variation of the growing season maximum normalized difference vegetation index, MNDVI, and its relationship with climatic factors on the Tibetan Plateau. Polish Journal of Ecology, 63(3):424-439.
DOI URL |
28 | Wu J S, Fu G . 2018. Modelling aboveground biomass using MODIS FPAR/LAI data in alpine grasslands of the Northern Tibetan Plateau. Remote Sensing Letters, 9(2):150-159. |
29 | Yeates G W, Bardgett R D, Cook R . 1997. Faunal and microbial diversity in three welsh grassland soils under conventional and organic management regimes. Journal of Applied Ecology, 34(2):453-470. |
30 | Yu C Q, Han F S, Fu G . 2019. Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations. Science of the Total Environment, 655:814-822. |
31 | Zak D R, Pregitzer K S, Burton A J , et al. 2011. Microbial responses to a changing environment: Implications for the future functioning of terrestrial ecosystems. Fungal Ecology, 4(6):386-395. |
32 | Zeng L S, Liao M, Chen C L , et al. 2007. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system. Ecotoxicology and Environmental Safety, 67(1):67-74. |
33 | Zhang X Z, Shen Z X, Fu G . 2015. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87:32-38. |
[1] | FU Gang,ZHANG Haorui,LI Shaowei,SUN Wei. A Meta-analysis of the Effects of Warming and Elevated CO2 on Soil Microbes [J]. Journal of Resources and Ecology, 2019, 10(1): 69-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||