Journal of Resources and Ecology ›› 2019, Vol. 10 ›› Issue (4): 441-450.DOI: 10.5814/j.issn.1674-764X.2019.04.011
• Resource Management • Previous Articles Next Articles
LIN Qinghuo1,2(), LI Hong3,4,*(
), LI Baoguo2, LUO Wei1, LIN Zhaomu1, CHA Zhengzao1, GUO Pengtao1
Received:
2018-11-07
Accepted:
2019-01-30
Online:
2019-07-30
Published:
2019-07-30
Contact:
LI Hong
About author:
First author: LIN Qinghuo, E-mail:
Supported by:
LIN Qinghuo,LI Hong,LI Baoguo,LUO Wei,LIN Zhaomu,CHA Zhengzao,GUO Pengtao. Sampling Size Requirements to Delineate Spatial Variability of Soil Properties for Site-Specific Nutrient Management in Rubber Tree Plantations[J]. Journal of Resources and Ecology, 2019, 10(4): 441-450.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jorae.cn/EN/10.5814/j.issn.1674-764X.2019.04.011
Fig. 2 Sampling points of different sampling strategiesNote: (a) sampling spacing 6 m × 14 m, 50 sampling numbers; (b) sampling spacing 12 m ×7 m, 50 sampling numbers; (c) sampling spacing 6 m × 21 m, 40 sampling numbers; (d) sampling spacing 18 m × 7 m, 40 sampling numbers.
Soil properties | Mean | Range | SD | CV(%) | Skew | Kurt | PK-S* |
---|---|---|---|---|---|---|---|
TN(g kg-1) | 0.79 | 0.48-1.13 | 0.12 | 14.64 | 0.35 | 0.58 | 0.43 |
OM(g kg-1) | 14.29 | 8.44-19.64 | 1.99 | 13.95 | 0.20 | 0.93 | 0.67 |
AP(mg kg-1) | 5.20 | 2.52-9.46 | 1.49 | 28.68 | 0.58 | -0.08 | 0.54 |
AK(mg kg-1) | 34.68 | 20.01-62.39 | 10.67 | 30.77 | 0.93 | 0.17 | 0.10 |
Table 1 Statistical parameters for selected chemical properties of soil in a rubber plantation (100 samples in total)
Soil properties | Mean | Range | SD | CV(%) | Skew | Kurt | PK-S* |
---|---|---|---|---|---|---|---|
TN(g kg-1) | 0.79 | 0.48-1.13 | 0.12 | 14.64 | 0.35 | 0.58 | 0.43 |
OM(g kg-1) | 14.29 | 8.44-19.64 | 1.99 | 13.95 | 0.20 | 0.93 | 0.67 |
AP(mg kg-1) | 5.20 | 2.52-9.46 | 1.49 | 28.68 | 0.58 | -0.08 | 0.54 |
AK(mg kg-1) | 34.68 | 20.01-62.39 | 10.67 | 30.77 | 0.93 | 0.17 | 0.10 |
Class | TN(g kg-1) | OM(g kg-1) | AP(mg kg-1) | AK(mg kg-1) |
---|---|---|---|---|
Abundant* | >1.4 | >25 | >8 | >60 |
Normal | 0.8-1.4 | 20-25 | 5-8 | 40-60 |
Lack | <0.8 | <20 | <5 | <40 |
Table 2 Classes of soil properties in a rubber plantation on Hainan Island (Lu, 1983)
Class | TN(g kg-1) | OM(g kg-1) | AP(mg kg-1) | AK(mg kg-1) |
---|---|---|---|---|
Abundant* | >1.4 | >25 | >8 | >60 |
Normal | 0.8-1.4 | 20-25 | 5-8 | 40-60 |
Lack | <0.8 | <20 | <5 | <40 |
Variable | Best model | A1 (m) | A2 (m) | κ | φ (°) | C0 | C1 | C0/(C0+C1) | Cross-validation indices | ||
---|---|---|---|---|---|---|---|---|---|---|---|
ME | RMSE | RMSSE | |||||||||
TN | Spherical | 52.93 | 16.93 | 3.13 | 20.5 | 4.18E-03 | 0.010 | 0.29 | 2.84E-03 | 0.087 | 0.975 |
OM | Spherical | 46.19 | 16.57 | 2.79 | 8.8 | 1.579 | 2.694 | 0.37 | 2.41E-02 | 1.737 | 1.06 |
AP | Spherical | 62.23 | 36.10 | 1.72 | 44.6 | 1.655 | 0.730 | 0.69 | 8.20E-04 | 1.439 | 1.028 |
AK | Spherical | 52.86 | 23.98 | 2.20 | 286.2 | 72.663 | 47.192 | 0.61 | -3.47E-02 | 9.528 | 0.985 |
Table 3 Semivariogram model of soil properties and their parameter in a rubber plantation
Variable | Best model | A1 (m) | A2 (m) | κ | φ (°) | C0 | C1 | C0/(C0+C1) | Cross-validation indices | ||
---|---|---|---|---|---|---|---|---|---|---|---|
ME | RMSE | RMSSE | |||||||||
TN | Spherical | 52.93 | 16.93 | 3.13 | 20.5 | 4.18E-03 | 0.010 | 0.29 | 2.84E-03 | 0.087 | 0.975 |
OM | Spherical | 46.19 | 16.57 | 2.79 | 8.8 | 1.579 | 2.694 | 0.37 | 2.41E-02 | 1.737 | 1.06 |
AP | Spherical | 62.23 | 36.10 | 1.72 | 44.6 | 1.655 | 0.730 | 0.69 | 8.20E-04 | 1.439 | 1.028 |
AK | Spherical | 52.86 | 23.98 | 2.20 | 286.2 | 72.663 | 47.192 | 0.61 | -3.47E-02 | 9.528 | 0.985 |
Fig. 3 Anisotropic semivariogram models for the selected soil properties in a rubber plantation. Chemical properties of soil included total nitrogen (TN); organic matter (OM); available phosphorous (AP); and available potassium (AK).
Fig. 4 Anisotropic semivariogram models for the selected soil properties in a rubber plantation. Soil chemical properties included total nitrogen (TN); organic matter (OM); available phosphorous (AP); and available potassium (AK).
Variable | ±5%* | ±10% | ||||
---|---|---|---|---|---|---|
SD | Classic | Kriging | SD | Classic | Kriging | |
TN | 0.04 | 27 | 9 | 0.08 | 10 | 2 |
OM | 0.72 | 25 | 9 | 1.44 | 10 | 2 |
AP | 0.26 | 57 | 29 | 0.52 | 26 | 8 |
AK | 1.73 | 60 | 32 | 3.47 | 29 | 9 |
Table 4 Estimated sample sizes (numbers) to obtain mean values within ±5% and ±10% of classic and Kriging methods
Variable | ±5%* | ±10% | ||||
---|---|---|---|---|---|---|
SD | Classic | Kriging | SD | Classic | Kriging | |
TN | 0.04 | 27 | 9 | 0.08 | 10 | 2 |
OM | 0.72 | 25 | 9 | 1.44 | 10 | 2 |
AP | 0.26 | 57 | 29 | 0.52 | 26 | 8 |
AK | 1.73 | 60 | 32 | 3.47 | 29 | 9 |
Fig. 5 Kriging and classic statistical standard errors in relation to sample sizes for estimating chemical properties of soil at a rubber plantation. Soil chemical properties included: (a) TN, total nitrogen; (b) OM, organic matter; (c) AP, available phosphorous; (d) AK, available potassium.
Samplestrategy * | Sample number | TN | OM | AP | AK | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE | G | RMSE | G | RMSE | G | RMSE | G | ||
A | 50 | 0.07 | 61.09 | 1.27 | 58.78 | 1.08 | 46.71 | 6.75 | 59.58 |
B | 50 | 0.07 | 64.61 | 1.19 | 63.98 | 1.03 | 52.30 | 7.57 | 49.19 |
C | 40 | 0.08 | 47.51 | 1.47 | 44.80 | 1.18 | 36.47 | 7.98 | 43.57 |
D | 40 | 0.08 | 48.37 | 1.44 | 47.09 | 1.21 | 33.58 | 9.30 | 23.27 |
Table 5 Test results of soil properties for various sampling strategies
Samplestrategy * | Sample number | TN | OM | AP | AK | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE | G | RMSE | G | RMSE | G | RMSE | G | ||
A | 50 | 0.07 | 61.09 | 1.27 | 58.78 | 1.08 | 46.71 | 6.75 | 59.58 |
B | 50 | 0.07 | 64.61 | 1.19 | 63.98 | 1.03 | 52.30 | 7.57 | 49.19 |
C | 40 | 0.08 | 47.51 | 1.47 | 44.80 | 1.18 | 36.47 | 7.98 | 43.57 |
D | 40 | 0.08 | 48.37 | 1.44 | 47.09 | 1.21 | 33.58 | 9.30 | 23.27 |
[1] | Adachi M, Bekku Y S, Konuma A, et al.2005. Required sample size for estimating soil respiration rates in large areas of two tropical forests and of two types of plantation in Malaysia.Forest Ecology and Management, 210(1-3): 455-459. |
[2] | Bao S D.2000. Soil Agricultural Chemistry Analysis. Beijing: Agriculture Press. (in Chinese). |
[3] | Bishop T F A, Mcbratney A B.2001. A comparison of prediction methods for the creation of field-extent soil property maps.Geoderma, 103(1): 149-160. |
[4] | Cambardella C A, Moorman T B, Parkin T B,et al.1994. Field-Scale Variability of Soil Properties in Central Iowa Soils.Soil Science Society of America Journal, 58(5): 1501-1511. |
[5] | Cochran W G.1977. Sampling Techniques, 3rd Edition. New York: John Wiley and Sons. |
[6] | Da Silva B M C G, Ambrosano G M B, Flrio F M, et al.2009. Assessment of variability in experiments in the operative dentistry area applied to shear bond strength tests.Revista de Odontologia da UNESP, 38(2): 117-121. |
[7] | Dale V H, Franklin R L A, Post W M,et al.1991. Sampling ecological information: Choice of sample size.Ecological Modelling, 57(1-2): 1-10. |
[8] | De Caires S A, Wuddivira M N, Bekele I.2014. Spatial analysis for management zone delineation in a humid tropic cocoa plantation.Precision Agriculture,16(2): 129-147. |
[9] | Di H J, Trangmar B, Kemp R.1989. Use of geostatistics in designing sampling strategies for soil survey.Soil Science Society of America Journal, 53(4): 1163-1167. |
[10] | Dong J, Xiao X, Sheldon S, et al.2012. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery.ISPRS Journal of Photogrammetry and Remote Sensing, 74: 20-33. |
[11] | FAO.1998. World reference base for soil resources. World Soil Resources Report No. 84, FAO, Rome. |
[12] | Gao L, Shao M.2012. The interpolation accuracy for seven soil properties at various sampling scales on the Loess Plateau, China.Journal of Soils and Sediments, 12(2): 128-142. |
[13] | Garten J C T, Kang S, Brice D J, et al.2007. Variability in soil properties at different spatial scales (1 m-1 km) in a deciduous forest ecosystem.Soil Biology and Biochemistry, 39(10): 2621-2627. |
[14] | Goovaerts P.1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, USA. |
[15] | Gotway C A, Ferguson R B, Hergert G W, et al.1996. Comparison of kriging and inverse-distance methods for mapping soil parameters.Soil Science Society of America Journal, 60(4): 1237-1247. |
[16] | Hirzel A, Guisan A.2002. Which is the optimal sampling strategy for habitat suitability modelling.Ecological Modelling, 157(2-3): 331-341. |
[17] | Hu K, Wang S, Li H, et al.2014. Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing. Geoderma, 226-227: 54-63. |
[18] | Irsg.2013. Rubber Statistical Bulletin. International rubber study group,Singapore, 55. |
[19] | Kerry R, Oliver M.2003. Variograms of Ancillary Data to Aid Sampling for Soil Surveys.Precision Agriculture, 4(3): 261-278. |
[20] | Kravchenko A N.2003. Influence of Spatial Structure on Accuracy of Interpolation Methods.Soil Science Society of America Journal, 67(5): 1564-1571. |
[21] | Lacote R, Gabla O, Obouayeba S,et al.2010. Long-term effect of ethylene stimulation on the yield of rubber trees is linked to latex cell biochemistry.Field Crops Research, 115(1): 94-98. |
[22] | Li H, Bielder C, Payne W A, et al.2014. Spatial characterization of scaled hydraulic conductivity functions in the internal drainage process leading to tropical semiarid soil management.Journal of Arid Environments, 105: 64-74. |
[23] | Lin Q H, Li H, Li B G, et al.2016. Assessment of spatial uncertainty for delineating optimal soil sampling sites in rubber tree management using sequential indicator simulation.Industrial Crops and Products, 91: 231-237. |
[24] | Lin Q, Li H, Luo W, et al.2013. Optimal soil-sampling design for rubber tree management based on fuzzy clustering.Forest Ecology and Management, 308: 214-222. |
[25] | Marques J J, Siqueira D S, Camargo L A,et al.2014. Magnetic susceptibility and diffuse reflectance spectroscopy to characterize the spatial variability of soil properties in a Brazilian Haplustalf. Geoderma, 219-220: 63-71. |
[26] | Matheron G.1965. Les Variables Régionalisées et leur Estimation . Pairs:Masson. |
[27] | Mcbratney A B, Webster R.1983. How many observations are needed for regional estimation of soil properties?Soil Science, 135(3): 177-183. |
[28] | Mcbratney A B, Webster R, Burgess T M.1981. The design of optimal sampling schemes for local estimation and mapping of of regionalized variables—I: Theory and method.Computers & Geosciences, 7(4): 331-334. |
[29] | Metcalfe D, Meir P, C Aragão L E O#magtechI#,et al.2008. Sample sizes for estimating key ecosystem characteristics in a tropical terra firme rainforest.Forest Ecology and Management, 255(3-4): 558-566. |
[30] | Michels T, Eschbach J M, Lacote R,et al.2012. Tapping panel diagnosis, an innovative on-farm decision support system for rubber tree tapping.Agronomy for Sustainable Development, 32(3): 791-801. |
[31] | Oliver M A, Webster R.2014. A tutorial guide to geostatistics: Computing and modelling variograms and kriging.Catena, 113: 56-69. |
[32] | Piccini C, Marchetti A, Francaviglia R.2014. Estimation of soil organic matter by geostatistical methods: Use of auxiliary information in agricultural and environmental assessment.Ecological Indicators, 36: 301-314. |
[33] | Sachs L.1982. Appalied Statistics. New York:Springer-Verlag, 706. |
[34] | Shi Z, Wang K, Bailey J S, et al.2000. Sampling strategies for mapping soil phosphorus and soil potassium distributions in cool temperate grassland.Precision Agriculture, 2(4): 347-357. |
[35] | Vasu D, Singh S K, Sahu N,et al.2017. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management.Soil and Tillage Research, 169: 25-34. |
[36] | Wang R C, Xie L, Chen J, et al.2013. Tin-carrier minerals in metaluminous granites of the western Nanling Range (southern China): Constraints on processes of tin mineralization in oxidized granites.Journal of Asian Earth Sciences, 74: 361-372. |
[37] | Webster R, Oliver M A.2001. Geostatistics for Environmental Scientists, 2nd ed. New York: John Wiley and Sons. |
[38] | Zhang H, Zhang G L, Zhao Y G, et al.2007. Chemical degradation of a Ferralsol (Oxisol) under intensive rubber (Hevea brasiliensis) farming in tropical China. Soil and Tillage Research, 93(1): 109-116. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||