资源与生态学报 ›› 2022, Vol. 13 ›› Issue (1): 129-141.DOI: 10.5814/j.issn.1674-764x.2022.01.015
张宪洲1,2(), 李猛3, 武建双4, 何永涛1,2, 牛犇1,*(
)
收稿日期:
2021-09-13
接受日期:
2021-10-13
出版日期:
2022-01-30
发布日期:
2022-01-08
通讯作者:
牛犇
ZHANG Xianzhou1,2(), LI Meng3, WU Jianshuang4, HE Yongtao1,2, NIU Ben1,*(
)
Received:
2021-09-13
Accepted:
2021-10-13
Online:
2022-01-30
Published:
2022-01-08
Contact:
NIU Ben
About author:
ZHANG Xianzhou, E-mail: zhangxz@igsnrr.ac.cn
Supported by:
摘要:
准确模拟和预测草地地上生物量 (Aboveground biomass, AGB)和理论载畜量对于维持草地生态系统平衡、优化放牧管理至关重要。当前很多研究以围栏外草地AGB为基础,估算了青藏高原草地AGB的现存量。但是,牛羊啃食后的草地AGB现存量无法准确评估草地理论载畜量。围栏内草地不受家畜采食影响,其年际变率由环境因子驱动,可视为草地潜在AGB (potential AGB, AGBp),更适用于草地理论载畜量的评估。本研究以青藏高原345个围栏内AGB观测数据为基础,结合气候、土壤和地形数据,利用随机森林算法构建草地潜在地上生物量估算模型,并对当前气候条件(2000-2018年)和未来20年(2021-2040年)4种气候变化情景(SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5)下的草地AGBp和高寒草地理论载畜量进行模拟与预测。结果表明:(1)随机森林算法可准确模拟当前气候条件下的青藏高寒草地AGBp (R2 = 0.76, P < 0.001);2000-2018年青藏高寒草地AGBp平均值为102.4 g m?2,时间上增加趋势不明显 (P > 0.05);AGBp年际波动和生长季降水显著正相关(R2 = 0.57, P < 0.001),和生长季温度日较差显著负相关(R2 = 0.51, P < 0.001)。(2)当前气候条件下,青藏高寒草地平均理论载畜量为0.94 SSU ha?1(standardized sheep unit ha?1);在过去20年约有54.1%草地理论载畜量呈提升状态。(3)和当前相比,未来20年青藏高原中部和北部草地AGBp和理论载畜量呈下降态势。因此,建议未来在厘清气候变化影响下草畜关系的基础上进行有针对性的草牧业规划和管理,以缓解区域气候变化引起的草畜矛盾。
张宪洲, 李猛, 武建双, 何永涛, 牛犇. 青藏高原草地地上生物量和理论载畜量[J]. 资源与生态学报, 2022, 13(1): 129-141.
ZHANG Xianzhou, LI Meng, WU Jianshuang, HE Yongtao, NIU Ben. Alpine Grassland Aboveground Biomass and Theoretical Livestock Carrying Capacity on the Tibetan Plateau[J]. Journal of Resources and Ecology, 2022, 13(1): 129-141.
Time period | Study area (104 km2) | Methods | Variables considered | AGB (g m-2) | References |
---|---|---|---|---|---|
1960-2002 | 147.74 | Century | Climate and soil data | 70.00 | Zhang et al., |
2002-2004 | 139.00 | Orchidee | Climate, soil and LAI data | 119.78 | Tan et al., |
1980-1990 | 113.60 | Area-weighted average | - | 58.11 | Ni, |
- | 101.10 | Area-weighted average | - | 61.15 | Luo et al., |
2001-2004 | - | Filed observations | - | 59.30 | Yang et al., |
2001-2004 | 112.80 | Linear regression | EVI | 68.80 | Yang et al., |
1982-2006 | 129.50 | Exponential regression | NDVI | 74.11 | Ma et al., |
2005 | 122.80 | Exponential regression | NDVI | 43.33 | Xu et al., |
- | 124.00 | Exponential regression | NDVI | 78.02 | Piao et al., |
1982-2013 | 154.48 | Exponential regression | NDVI | 104.40 | Jiao et al., |
2000-2014 | 151.11 | Random forest | Climate, terrain and NDVI | 77.12 | Zeng et al., |
- | 132.00 | Random forest | Climate and NDVI | 78.40 | Xia et al., |
2000-2017 | - | Random forest | Climate, terrain and NDVI | 59.63 | Gao et al., |
Table 1 Estimated mean aboveground biomass (AGB) of alpine grassland on the Tibetan Plateau in various published studies
Time period | Study area (104 km2) | Methods | Variables considered | AGB (g m-2) | References |
---|---|---|---|---|---|
1960-2002 | 147.74 | Century | Climate and soil data | 70.00 | Zhang et al., |
2002-2004 | 139.00 | Orchidee | Climate, soil and LAI data | 119.78 | Tan et al., |
1980-1990 | 113.60 | Area-weighted average | - | 58.11 | Ni, |
- | 101.10 | Area-weighted average | - | 61.15 | Luo et al., |
2001-2004 | - | Filed observations | - | 59.30 | Yang et al., |
2001-2004 | 112.80 | Linear regression | EVI | 68.80 | Yang et al., |
1982-2006 | 129.50 | Exponential regression | NDVI | 74.11 | Ma et al., |
2005 | 122.80 | Exponential regression | NDVI | 43.33 | Xu et al., |
- | 124.00 | Exponential regression | NDVI | 78.02 | Piao et al., |
1982-2013 | 154.48 | Exponential regression | NDVI | 104.40 | Jiao et al., |
2000-2014 | 151.11 | Random forest | Climate, terrain and NDVI | 77.12 | Zeng et al., |
- | 132.00 | Random forest | Climate and NDVI | 78.40 | Xia et al., |
2000-2017 | - | Random forest | Climate, terrain and NDVI | 59.63 | Gao et al., |
Fig. 1 Spatial distribution of eco-geographical regions and the sample sites on the Tibetan Plateau Note: (a) The eco-geographical regions of TP (Zheng, 1996) are the same as those listed in Table 2. (b) Sample sites in this study are from field observations and a previous study (Fu et al., 2017), which basically included all alpine grassland ecosystems on the TP.
Classification | Abbreviation | Meaning |
---|---|---|
Eco-geographical regions | TP | Tibetan Plateau |
IB1 | Golog-Nagqu high-cold shrub-meadow zone | |
IIAB1 | Western Sichuan-eastern Tibet montane coniferous forest zone | |
IC1 | Southern Qinghai high-cold meadow steppe zone | |
IC2 | Qiangtang high-cold steppe zone | |
ID1 | Kunlun high-cold desert zone | |
IIC1 | Southern Tibet montane shrub-steppe zone | |
IIC2 | Eastern Qinghai-Qilian montane steppe zone | |
IID1 | Nagri montane desert-steppe and desert zone | |
IID2 | Qaidam montane desert zone | |
IID3 | Northern slopes of Kunlun montane desert zone | |
OA1 | Southern slopes of Himalaya montane evergreen broad-leaved forest zone | |
Grass and livestock | AGBp | (Potential, only climate-derived) Aboveground biomass of the grassland |
LCCT | Theoretical livestock carrying capacity | |
SSU | The standardized sheep unit (daily feed of 1.33 kg hay in this study) | |
Climate and soil | GSDR | Growing season (May to September in each year) diurnal temperature range |
GSP | Growing season precipitation | |
GST | Growing season temperature | |
NGSDR | Non-growing season diurnal temperature range | |
NGSP | Non-growing season precipitation | |
NGST | Non-growing season temperature | |
SOM | Soil organic matter |
Table 2 List of abbreviations used in this study
Classification | Abbreviation | Meaning |
---|---|---|
Eco-geographical regions | TP | Tibetan Plateau |
IB1 | Golog-Nagqu high-cold shrub-meadow zone | |
IIAB1 | Western Sichuan-eastern Tibet montane coniferous forest zone | |
IC1 | Southern Qinghai high-cold meadow steppe zone | |
IC2 | Qiangtang high-cold steppe zone | |
ID1 | Kunlun high-cold desert zone | |
IIC1 | Southern Tibet montane shrub-steppe zone | |
IIC2 | Eastern Qinghai-Qilian montane steppe zone | |
IID1 | Nagri montane desert-steppe and desert zone | |
IID2 | Qaidam montane desert zone | |
IID3 | Northern slopes of Kunlun montane desert zone | |
OA1 | Southern slopes of Himalaya montane evergreen broad-leaved forest zone | |
Grass and livestock | AGBp | (Potential, only climate-derived) Aboveground biomass of the grassland |
LCCT | Theoretical livestock carrying capacity | |
SSU | The standardized sheep unit (daily feed of 1.33 kg hay in this study) | |
Climate and soil | GSDR | Growing season (May to September in each year) diurnal temperature range |
GSP | Growing season precipitation | |
GST | Growing season temperature | |
NGSDR | Non-growing season diurnal temperature range | |
NGSP | Non-growing season precipitation | |
NGST | Non-growing season temperature | |
SOM | Soil organic matter |
Fig. 2 Correlation coefficients of grassland AGBp with 14 environmental factors (a) and the relationships between observed grassland AGBp and estimated AGBp on the TP based on the RF model (b)
Eco-geographical regions* | AGBp mean (g m-2) | AGBp trend (g m-2 yr-1) | ||
---|---|---|---|---|
Mean | Standard deviation (SD) | Mean | Standard deviation (SD) | |
IB1 | 181.64 | 52.87 | 0.47 | 0.80 |
ICI | 93.68 | 32.03 | 0.31 | 0.60 |
IC2 | 53.81 | 24.90 | -0.11 | 0.30 |
ID1 | 55.90 | 7.70 | 0.02 | 0.08 |
IIAB1 | 196.47 | 46.29 | -0.23 | 0.69 |
IIC2 | 167.11 | 44.29 | 1.04 | 0.59 |
IIC1 | 80.47 | 25.17 | -0.16 | 0.29 |
IID2 | 109.63 | 24.70 | 0.09 | 0.22 |
OA1 | 228.15 | 35.00 | -0.53 | 0.48 |
IID1 | 56.42 | 24.77 | 0.36 | 0.60 |
IID3 | 92.39 | 23.35 | -0.02 | 0.11 |
TP | 102.40 | 63.47 | 0.14 | 0.61 |
Table 3 The mean values and trends of grassland AGBp for each eco-region on the TP
Eco-geographical regions* | AGBp mean (g m-2) | AGBp trend (g m-2 yr-1) | ||
---|---|---|---|---|
Mean | Standard deviation (SD) | Mean | Standard deviation (SD) | |
IB1 | 181.64 | 52.87 | 0.47 | 0.80 |
ICI | 93.68 | 32.03 | 0.31 | 0.60 |
IC2 | 53.81 | 24.90 | -0.11 | 0.30 |
ID1 | 55.90 | 7.70 | 0.02 | 0.08 |
IIAB1 | 196.47 | 46.29 | -0.23 | 0.69 |
IIC2 | 167.11 | 44.29 | 1.04 | 0.59 |
IIC1 | 80.47 | 25.17 | -0.16 | 0.29 |
IID2 | 109.63 | 24.70 | 0.09 | 0.22 |
OA1 | 228.15 | 35.00 | -0.53 | 0.48 |
IID1 | 56.42 | 24.77 | 0.36 | 0.60 |
IID3 | 92.39 | 23.35 | -0.02 | 0.11 |
TP | 102.40 | 63.47 | 0.14 | 0.61 |
Fig. 3 The spatial and temporal patterns of AGBp on the TP from 2000 to 2018 Note: The eco-geographical regions of the TP are the same as indicated in Table 2.
Fig. 4 The dynamics of growing season and non-growing season diurnal temperature, temperature, and precipitation on the Tibetan Plateau from 2000 to 2018. Note: The six climate variables from (a) to (f) are the same as indicated in Table 2.
Fig. 5 Correlations between AGBp and climatic variables from 2000 to 2018 on the TP Note: The six climate variables are the same as indicated in Table 2.
Fig. 6 The temporal-spatial patterns of the theoretical livestock carrying capacity from 2000 to 2018 on the TP Note: The eco-geographical regions of the TP are the same as indicated in Table 2.
Fig. 7 The grassland potential aboveground biomass (AGBp) changes in different future climate change scenarios for each eco-region on the TP compared to the past two decades Note: The eco-geographical regions of the TP are the same as indicated in Table 2. The different climate change scenarios of SSP1-2.6 SSP2-4.5, SSP3-7.0, and SSP5-8.5 (a-d) are the scenarios of low radiative forcing (2.6 W m-2), moderate radiative forcing (4.5 W m-2), medium to high radiative forcing (7.0 W m-2), and high radiative forcing (8.5 W m-2) in 2100 under the different social development conditions.
Eco-geographical regions* | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 |
---|---|---|---|---|
IB1 | -2.70±9.54 | -2.24±9.31 | -2.16±9.60 | -2.40±10.10 |
IC1 | -16.33±10.27 | -14.05±10.32 | -14.37±10.69 | -16.29±11.05 |
IC2 | -0.67±18.05 | 0.81±18.09 | 0.63±18.76 | -11.51±17.43 |
ID1 | -7.79±8.29 | -7.74±8.37 | -8.59±8.73 | -17.47±7.44 |
IIAB1 | 2.75±5.73 | 2.48±5.64 | 2.84±6.07 | 2.28±6.07 |
IIC2 | -7.11±8.8 | -8.14±8.54 | -8.43±8.28 | -6.01±9.10 |
IIC1 | -0.98±9.29 | -0.72±9.31 | -0.22±9.45 | -1.24±8.96 |
IID2 | -4.66±7.11 | -4.71±6.85 | -4.76±6.81 | -4.33±7.11 |
OA1 | 1.94±2.69 | 1.30±1.93 | 1.61±2.28 | 0.93±2.01 |
IID1 | 4.73±17.9 | 4.21±18.01 | 1.39±17.27 | -1.07±21.35 |
IID3 | -5.03±8.21 | -4.18±7.24 | -4.11±7.46 | -5.27±8.00 |
Tibetan Plateau | -3.75±13.82 | -3.05±13.7 | -3.25±14.05 | -7.96±14.14 |
Table 4 Grassland potential aboveground biomass (AGBp) changes in different future climate change scenarios for each eco-region on the TP compared to the past two decades (Unit: g m-2)
Eco-geographical regions* | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 |
---|---|---|---|---|
IB1 | -2.70±9.54 | -2.24±9.31 | -2.16±9.60 | -2.40±10.10 |
IC1 | -16.33±10.27 | -14.05±10.32 | -14.37±10.69 | -16.29±11.05 |
IC2 | -0.67±18.05 | 0.81±18.09 | 0.63±18.76 | -11.51±17.43 |
ID1 | -7.79±8.29 | -7.74±8.37 | -8.59±8.73 | -17.47±7.44 |
IIAB1 | 2.75±5.73 | 2.48±5.64 | 2.84±6.07 | 2.28±6.07 |
IIC2 | -7.11±8.8 | -8.14±8.54 | -8.43±8.28 | -6.01±9.10 |
IIC1 | -0.98±9.29 | -0.72±9.31 | -0.22±9.45 | -1.24±8.96 |
IID2 | -4.66±7.11 | -4.71±6.85 | -4.76±6.81 | -4.33±7.11 |
OA1 | 1.94±2.69 | 1.30±1.93 | 1.61±2.28 | 0.93±2.01 |
IID1 | 4.73±17.9 | 4.21±18.01 | 1.39±17.27 | -1.07±21.35 |
IID3 | -5.03±8.21 | -4.18±7.24 | -4.11±7.46 | -5.27±8.00 |
Tibetan Plateau | -3.75±13.82 | -3.05±13.7 | -3.25±14.05 | -7.96±14.14 |
Fig. 8 The theoretical livestock carrying capacity of alpine grasslands on the TP in the past two decades (2000-2018) and in the future two decades (2021-2040) under four climate change scenarios Note: The different climate change scenarios are the same as indicated in Fig. 7.
[1] |
Bai Y F, Han X G, Wu J G, et al. 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431: 181-184.
DOI URL |
[2] |
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32.
DOI URL |
[3] |
Cao Y N, Wu J S, Zhang X Z, et al. 2019. Dynamic forage-livestock balance analysis in alpine grasslands on the Northern Tibetan Plateau. Journal of Environmental Management, 238: 352-359.
DOI URL |
[4] |
Cao Y N, Wu J S, Zhang X Z, et al. 2020. Comparison of methods for evaluating the forage-livestock balance of alpine grasslands on the Northern Tibetan Plateau. Journal of Resources and Ecology, 11(3): 272-282.
DOI URL |
[5] |
Chen B X, Zhang X Z, Tao J, et al. 2014. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 189-190: 11-18.
DOI URL |
[6] |
Chen H, Zhu Q A, Peng C H, et al. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19(10): 2940-2955.
DOI URL |
[7] | Chen T X, Chen X. 2007. Variation of diurnal temperature range in China in the past 50 years. Plateau Meteorology, 26(1): 150-157. (in Chinese) |
[8] |
Dai A G, Trenberth K E, Karl T R. 1999. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. Journal of Climate, 12(8): 2451-2473.
DOI URL |
[9] | Dong S K, Li J P, Li X Y, et al. 2010. Application of design theory for restoring the “black beach” degraded rangeland at the headwater areas of the Qinghai-Tibetan Plateau. African Journal of Agricultural Research, 5(25): 3542-3552. |
[10] |
Fan J W, Shao Q Q, Liu J Y, et al. 2010. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environmental Monitoring and Assessment, 170(1-4): 571-584.
DOI URL |
[11] |
Frankenberg C, Yin Y, Byrne B, et al. 2021. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science, 373(6562): eabg2947. DOI: 10.1126/science.abg2947.
DOI URL |
[12] |
Fu G, Shen Z X, Zhang X Z. 2018. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agricultural and Forest Meteorology, 249: 11-21.
DOI URL |
[13] |
Fu G, Sun W, Li S W, et al. 2017. Modeling aboveground biomass using MODIS images and climatic data in grasslands on the Tibetan Plateau. Journal of Resources and Ecology, 8(1): 42-49.
DOI URL |
[14] |
Gao X X, Dong S K, Li S, et al. 2020. Using the random forest model and validated MODIS with the field spectrometer measurement promote the accuracy of estimating aboveground biomass and coverage of alpine grasslands on the Qinghai-Tibetan Plateau. Ecological Indicators, 112: 106114. DOI: 10.1016/j.ecolind.2020.106114.
DOI URL |
[15] |
Harris R B. 2010. Rangeland degradation on the Qinghai-Tibetan Plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 74(1): 1-12.
DOI URL |
[16] | He Y T, Zhang X Z, Yu C. 2016. Coupling crop farming and pastoral system for regional development and their ecological effects on the Tibetan Plateau. Bulletin of Chinese Academy of Sciences, 31(1): 112-117. (in Chinese) |
[17] | Hou X Y. 2001. Vegetation atlas of China. Beijing, China: Science Press. (in Chinese) |
[18] |
Jiao C C, Yu G R, Ge J P, et al. 2017. Analysis of spatial and temporal patterns of aboveground net primary productivity in the Eurasian steppe region from 1982 to 2013. Ecology and Evolution, 7(14): 5149-5162.
DOI URL |
[19] |
Karhu K, Fritze H, Tuomi M, et al. 2010. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biology and Biochemistry, 42(1): 72-82.
DOI URL |
[20] |
Knapp A K, Smith M D. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science, 291(5503): 481-484.
PMID |
[21] | Li M, He Y T, Fu G, et al. 2016. Livestock-forage balance in the Three River Headwater Region based on the terrestrial ecosystem model. Ecology and Environmental Sciences, 25(12): 1915-1921. (in Chinese) |
[22] |
Li M, Wu J S, Song C Q, et al. 2019. Temporal variability of precipitation and biomass of alpine grasslands on the Northern Tibetan Plateau. Remote Sensing, 11(3): 360. DOI: 10.3390/rs11030360.
DOI URL |
[23] | Li X H. 2013. Using “random forest” for classification and regression. Chinese Journal of Applied Entomology, 50(4): 1190-1197. (in Chinese) |
[24] |
Liu Y W, Piao S L, Gasser T, et al. 2019. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 12(10): 809-814.
DOI URL |
[25] |
Liu Y X, Zhao W W, Hua T, et al. 2019. Slower vegetation greening faced faster social development on the landscape of the Belt and Road Region. Science of the Total Environment, 697: 134103. DOI: 10.1016/j.scitotenv.2019.134103.
DOI URL |
[26] |
Long R J, Apori S O, Castro F B, et al. 1999. Feed value of native forages of the Tibetan Plateau of China. Animal Feed Science and Technology, 80(2): 101-113.
DOI URL |
[27] | Long R J, Shang Z H, Guo X S, et al. 2009. Case study 7: Qinghai-Tibetan Plateau rangelands. Rangeland Degradation & Recovery in China’s Pastoral Lands, 25(4): 29-36. |
[28] |
Lopatin J, Dolos K, Hernández H J, et al. 2016. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sensing of Environment, 173(315): 200-210.
DOI URL |
[29] | Luo T X, Li W H, Leng Y F, et al. 1998. Estimation of total biomass and potential distribution of net primary productivity in the Tibetan Plateau. Geographical Research, 17(4): 2-9. (in Chinese) |
[30] |
Luo T X, Li W H, Zhu H Z. 2002. Estimated biomass and productivity of natural vegetation on the Tibetan Plateau. Ecological Applications, 12(4): 980-997.
DOI URL |
[31] | Ma W H, Fang J Y, Yang Y H, et al. 2010. Biomass carbon stocks and their changes in Northern China’s grasslands during 1982-2006. Science China (Life Sciences), 53(7): 841-850. |
[32] |
Ni J. 2004. Forage yield-based carbon storage in grasslands of China. Climatic Change, 67(2-3): 237-246.
DOI URL |
[33] |
Niu B, He Y T, Zhang X Z, et al. 2016. Tower-based validation and improvement of MODIS gross primary production in an alpine swamp meadow on the Tibetan Plateau. Remote Sensing, 8(7): 592. DOI: 10.3390/rs8070592.
DOI URL |
[34] |
Niu B, He Y T, Zhang X Z, et al. 2020. Satellite-based estimates of canopy photosynthetic parameters for an alpine meadow in Northern Tibet. Journal of Resources and Ecology, 11(3): 253-262.
DOI URL |
[35] |
Niu B, Zeng C X, Zhang X Z, et al. 2019. High below-ground productivity allocation of alpine grasslands on the Northern Tibet. Plants, 8(12): 535. DOI: 10.3390/plants8120535
DOI URL |
[36] |
Niu B, Zhang X Z, He Y T, et al. 2017. Satellite-based estimation of gross primary production in an alpine swamp meadow on the Tibetan Plateau: A multi-model comparison. Journal of Resources and Ecology, 8(1): 57-66.
DOI URL |
[37] |
Niu B, Zhang X Z, Piao S L, et al. 2021. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Science Advances, 7(15): eabc7358. DOI: 10.1126/sciadv.abc7358.
DOI URL |
[38] |
Phillips C L, Gregg J W, Wilson J K. 2011. Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms. Global Change Biology, 17(11): 3263-3273.
DOI URL |
[39] | Piao S L, Fang J Y, He J S, et al. 2004. Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 4: 491-498. (in Chinese) |
[40] | Piao S L, Zhang X Z, Wang T, et al. 2019. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chinese Science Bulletin, 64(27): 2842-2855. (in Chinese) |
[41] |
Sang Y X, Huang L, Wang X H, et al. 2021. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science, 373(6562): eabg4420. DOI: 10.1126/science.abg4420.
DOI URL |
[42] |
Scurlock J M O, Hall D O. 1998. The global carbon sink: A grassland perspective. Global Change Biology, 4(2): 229-233.
DOI URL |
[43] | Shang Z H, Gibb M J, Leiber F, et al. 2014. The sustainable development of grassland-livestock systems on the Tibetan Plateau: Problems, strategies and prospects. The Rangeland Journal, 36(3): 267-296. |
[44] |
Shen M G, Piao S L, Cong N, et al. 2015. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 21(10): 3647-3656.
DOI URL |
[45] |
Shi P L, Zhang X Z. 2020. Towards regional synergy: Reconciling rangeland ecological functioning with forage production of cultivated pasture. Journal of Resources and Ecology, 11(3): 247-252.
DOI URL |
[46] | Si S, Bi X, Kong X, et al. 2020. Spatial-temporal characteristics of the emission intensities of several major greenhouse gases and aerosols under CMIP6 scenarios. Climatic and Environmental Research, 25(4): 366-384. (in Chinese) |
[47] |
Song J, Wan S Q, Piao S L, et al. Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecology Letters, 22(3): 458-468.
DOI URL |
[48] |
Tan K, Ciais P, Piao S L, et al. 2010. Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan grasslands. Global Biogeochemical Cycles, 24(1): GB1013. DOI: 10.1029/2009GB003530.
DOI |
[49] |
Tin K H. 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8): 832-844.
DOI URL |
[50] |
Wang S H, Zhang Y G, Ju W M, et al. 2020. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370(6522): 1295-1300.
DOI URL |
[51] |
Wang S H, Zhang Y G, Ju W M, et al. 2021. Response to comments on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science, 373(6562): eabg7484. DOI: 10.1126/science.abg7484.
DOI URL |
[52] |
Wang S Y, Zhang B, Yang Q C, et al. 2017. Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agricultural and Forest Meteorology, 232: 235-246.
DOI URL |
[53] |
Winkler A J, Myneni R B, Hannart A, et al. 2021. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences, 18(17): 4985-5010.
DOI URL |
[54] |
Wu J S, Feng Y F, Zhang X Z, et al. 2017. Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau. Scientific Reports, 7(1): 15202. DOI: 10.1038/s41598-017-15530-2.
DOI |
[55] |
Wu J S, Fu G. 2018. Modelling aboveground biomass using MODIS FPAR/LAI data in alpine grasslands of the Northern Tibetan Plateau. Remote Sensing Letters, 9(2): 150-159.
DOI URL |
[56] |
Wu J S, Wurst S, Zhang X Z. 2016. Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in a)Tibetan alpine grasslands. Scientific Reports, 6: 35649. DOI: 10.1038/s41598-017-15530-2.
DOI |
[57] |
Xia J Z, Ma M N, Liang T G, et al. 2018. Estimates of grassland biomass and turnover time on the Tibetan Plateau. Environmental Research Letters, 13(1): 014020. DOI: 10.1038/s41598-017-15530-2.
DOI URL |
[58] |
Xu L L, Niu B, Zhang X Z, et al. 2021. Dynamic threshold of carbon phenology in two cold temperate grasslands in China. Remote Sensing, 13(4): 574. DOI: 10.3390/rs13040574.
DOI URL |
[59] |
Xu W H, Xiao Y, Zhang J J, et al. 2017. Strengthening protected areas for biodiversity and ecosystem services in China. Proceedings of the National Academy of Sciences of the USA, 114(7): 1601-1606.
DOI URL |
[60] |
Yang G, Peng C H, Chen H, et al. 2017. Qinghai-Tibetan Plateau peatland sustainable utilization under anthropogenic disturbances and climate change. Ecosystem Health and Sustainability, 3(3): e01263. DOI: 10.1002/ehs2.1263.
DOI URL |
[61] |
Yang Y H, Fang J Y, Ma W H, et al. 2010. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography, 19(2): 268-277.
DOI URL |
[62] |
Yang Y H, Fang J Y, Pan Y D, et al. 2009. Aboveground biomass in Tibetan grasslands. Journal of Arid Environments, 73(1): 91-95.
DOI URL |
[63] |
Yao T D, Thompson L G, Mosbrugger V, et al. 2012. Third pole environment (TPE). Environmental Development, 3: 52-64.
DOI URL |
[64] |
Yao Y T, Wang X H, Li Y, et al. 2018. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 24(1): 184-196.
DOI URL |
[65] |
Zeng N, Ren X L, He H L, et al. 2019. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm. Ecological Indicators, 102: 479-487.
DOI |
[66] | Zhang X Z, He Y T, Shen Z X, et al. 2015a. Frontier of the ecological construction support the sustainable development in Tibet Autonomous Region. Bulletin of the Chinese Academy of Sciences, 30(3): 306-312. (in Chinese) |
[67] | Zhang X Z, Wang X, Gao Q, et al. 2016. Research in ecological restoration and reconstruction technology for degraded alpine ecosystem, boosting the protection and construction of ecological security barrier in Tibet. Acta Ecologica Sinica, 36(22): 7083-7087. (in Chinese) |
[68] | Zhang X Z, Yang Y, Piao S, et al. 2015b. Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 60(32): 3048-3056. (in Chinese) |
[69] |
Zhang Y, Gao Q Z, Dong S K, et al. 2015c. Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau. The Rangeland Journal, 37(1): 57-65.
DOI URL |
[70] | Zhang Y, Li B, Zheng D. 2002. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21(1): 1-8. (in Chinese) |
[71] |
Zhang Y Q, Tang Y H, Jiang J, et al. 2007. Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Science in China (Series D), 50(1): 113-120.
DOI URL |
[72] | Zheng D. 1996. Natural region system research of Tibetan Plateau. Science in China (Series D), 26(4): 336-341. (in Chinese) |
[73] |
Zhu Z C, Zeng H, Myneni R B, et al. 2021. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science, 373(6562): eabg5673. DOI: 10.1126/science.abg5673.
DOI URL |
[1] | 张彪, 史芸婷, 王爽. 生态系统服务变化的驱动机制研究进展[J]. 资源与生态学报, 2022, 13(1): 68-79. |
[2] | 何豫川, 熊俊楠, 阿布都马南·阿合买提哈力, 程维明, 叶冲冲, 贺文, 雍志玮, 田洁. 基于Google Earth Engine的阿勒泰地区植被时空格局及驱动力分析[J]. 资源与生态学报, 2021, 12(6): 729-742. |
[3] | 田洁, 熊俊楠, 张一驰, 程维明, 何豫川, 叶冲冲, 贺文. 定量评估气候变化和人类活动对阿勒泰地区草地净初级生产力的影响[J]. 资源与生态学报, 2021, 12(6): 743-756. |
[4] | 马伟东, 刘峰贵, 周强, 陈琼, 张存桂, 刘飞, 李燕燕, 赵佩. 青藏高原洪涝灾害的临界雨量估算[J]. 资源与生态学报, 2021, 12(5): 600-608. |
[5] | 赵烜岚, 王军邦, 叶辉, MUHAMMAD Amir, 王绍强. 2001-2018年青藏高原三江源地区高寒草地的波文比[J]. 资源与生态学报, 2021, 12(3): 305-318. |
[6] | Sydney M.GREENFIELD, Aliana C.NORRIS, Joseph P.LAMBERT, 乌力吉, 色拥军, 詹瑨祺, 马兵, 李灯, 时坤, Philip RIORDAN. 围栏引起的有蹄类动物死亡及其对未来祁连山国家公园管理的启示[J]. 资源与生态学报, 2021, 12(1): 99-109. |
[7] | 石培礼, 吴宁, GopalS.RAWAT. 喜马拉雅地区林线格局及其对气候变化的响应[J]. 资源与生态学报, 2020, 11(4): 342-348. |
[8] | 宋明华, 李猛, 霍佳娟, 吴良, 张宪洲. 西藏高原高寒草地的多功能性及其阈值[J]. 资源与生态学报, 2020, 11(3): 263-271. |
[9] | 曹亚楠, WUJianshuang, 张宪洲, 牛犇, 何永涛. 藏北高原高寒草地草畜平衡评估方法比较[J]. 资源与生态学报, 2020, 11(3): 272-282. |
[10] | 王向涛, 张宪洲, 王俊皓, 牛犇. 青藏高原干旱度指数对气候因子变化的响应[J]. 资源与生态学报, 2020, 11(3): 304-314. |
[11] | 张豪睿, 秦基伟, 付刚. 模拟增温对青藏高原高寒草甸群落碳氮计量学的影响[J]. 资源与生态学报, 2020, 11(3): 315-321. |
[12] | 向伶, 高翔, 彭玉辉, 梁婕. 气候变化下基于物种与植物耦联机制的小白额雁(Anser erythropus)潜在生境及适宜性研究——以长江流域中下游为例[J]. 资源与生态学报, 2020, 11(2): 140-149. |
[13] | 秦勤, 孙佑海. 政策工具视域下中国大气污染防治政策框架研究[J]. 资源与生态学报, 2020, 11(2): 182-190. |
[14] | Raju RAI, Basanta PAUDEL, 谷昌军, Narendra Raj KHANAL. 喜马拉雅中部甘达基河流域尼泊尔国鸟(棕尾虹雉)生境分布变化[J]. 资源与生态学报, 2020, 11(2): 223-231. |
[15] | 刘远哲,宋伟,赵东升,高江波. 气候变化对工业经济系统的影响研究进展[J]. 资源与生态学报, 2020, 11(1): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||