资源与生态学报 ›› 2022, Vol. 13 ›› Issue (1): 93-99.DOI: 10.5814/j.issn.1674-764x.2022.01.010
李静1,2(), 焦雯珺2,*(
), 闵庆文2,*(
), 李文华2, 赵军凯3
收稿日期:
2021-07-23
接受日期:
2021-10-20
出版日期:
2022-01-30
发布日期:
2022-01-08
通讯作者:
焦雯珺,闵庆文
LI Jing1,2(), JIAO Wenjun2,*(
), MIN Qingwen2,*(
), LI Wenhua2, ZHAO Junkai3
Received:
2021-07-23
Accepted:
2021-10-20
Online:
2022-01-30
Published:
2022-01-08
Contact:
JIAO Wenjun,MIN Qingwen
About author:
LI Jing, E-mail: xiaofengxue86@163.com
Supported by:
摘要:
太湖流域的水环境质量呈现严重恶化趋势,农业污染物的排放是太湖流域水体环境恶化的主要原因之一。农业污染物主要来源于种植业、畜禽养殖业和水产养殖业的生产过程,不同于以往分开论述三者对水环境的影响,本文基于全国第一次污染普查数据,运用污染足迹模型定量分析了湖州市农业面源(种植业、畜禽养殖业和水产养殖业)对水环境的影响。研究结果表明:(1)农业生产产生的污染物对水环境的影响排序为:磷>氮>有机物;(2)各农业生产类型对水环境的影响排序为:水产养殖业>种植业>畜禽养殖业;(3)湖州市各区县对水环境的影响也存在着明显的空间差异。通过对湖州市农业污染足迹评估,可以明确地提出哪种污染物类型、农业生产类型和区域是湖州市农业面源污染治理的重点。研究结果可以为太湖流域农业的可持续发展和水资源的可持续利用提供一定的参考价值。
李静, 焦雯珺, 闵庆文, 李文华, 赵军凯. 基于污染足迹模型的湖州市农业污染评估[J]. 资源与生态学报, 2022, 13(1): 93-99.
LI Jing, JIAO Wenjun, MIN Qingwen, LI Wenhua, ZHAO Junkai. Evaluating Agricultural Water Pollution with the Waste Absorption Footprint (WAF) in Huzhou City, China[J]. Journal of Resources and Ecology, 2022, 13(1): 93-99.
Agricultural source | COD | Nitrogen | Phosphorus |
---|---|---|---|
Crop farming | 864809 | 696495 | 45640 |
Livestock and poultry breeding | 613807 | 43986 | 6460 |
Aquaculture | 3735993 | 451780 | 78330 |
Total | 5214609 | 1192261 | 130430 |
Table 1 Amounts of pollutants discharged into the water from agricultural sources in Huzhou in 2008 (Unit: kg yr-1)
Agricultural source | COD | Nitrogen | Phosphorus |
---|---|---|---|
Crop farming | 864809 | 696495 | 45640 |
Livestock and poultry breeding | 613807 | 43986 | 6460 |
Aquaculture | 3735993 | 451780 | 78330 |
Total | 5214609 | 1192261 | 130430 |
Pollutant | Crop farming | Livestock and poultry breeding | Aquaculture | Total |
---|---|---|---|---|
COD | 491 | 348 | 2119 | 2958 |
Nitrogen | 4511 | 285 | 2926 | 7722 |
Phosphorus | 4564 | 646 | 7833 | 13043 |
Total | 9566 | 1279 | 12878 | 23723 |
Table 2 Footprints of the three different pollutants from the different agricultural sources in Huzhou in 2008 (Unit: ha)
Pollutant | Crop farming | Livestock and poultry breeding | Aquaculture | Total |
---|---|---|---|---|
COD | 491 | 348 | 2119 | 2958 |
Nitrogen | 4511 | 285 | 2926 | 7722 |
Phosphorus | 4564 | 646 | 7833 | 13043 |
Total | 9566 | 1279 | 12878 | 23723 |
County or district | Crop farming | Livestock and poultry breeding | Aquaculture | Total |
---|---|---|---|---|
Anji County | 1639 | 51 | 113 | 1804 |
Changxing County | 2548 | 67 | 1026 | 3641 |
Deqing County | 1729 | 288 | 6592 | 8610 |
Nanxun District | 2205 | 763 | 3451 | 6419 |
Wuxing District | 1445 | 109 | 1696 | 3249 |
Table 3 Footprints from different agricultural sources distributed among the counties and districts in Huzhou in 2008 (Unit: ha yr-1)
County or district | Crop farming | Livestock and poultry breeding | Aquaculture | Total |
---|---|---|---|---|
Anji County | 1639 | 51 | 113 | 1804 |
Changxing County | 2548 | 67 | 1026 | 3641 |
Deqing County | 1729 | 288 | 6592 | 8610 |
Nanxun District | 2205 | 763 | 3451 | 6419 |
Wuxing District | 1445 | 109 | 1696 | 3249 |
[1] | Duan L, Duan Z Q, Chang J. 2007. Effect of surface management and fertilization mode on nitrogen runoff from upland in Taihu Lake Region. Journal of Agro-Environment Science, 26(3): 813-818. (in Chinese) |
[2] | Gao C, Zhu J Y, Zhu J G, et al. 2005. Phosphorus exports via overland runoff under different land uses and their seasonal pattern. Acta Scientiae Circumstantiae, 25(11): 1543-1549. (in Chinese) |
[3] |
Hu Y, Cheng H F. 2013. Water pollution during China’s industrial transition. Environmental Development, 8(1): 57-73.
DOI URL |
[4] |
Huang J C, Zhang Y J, Bing H J, et al. 2021. Characterizing the river water quality in China: Recent progress and on-going challenges. Water Research, 201(4): 117309. DOI: 10.1016/j.watres.2021.117309.
DOI URL |
[5] | Huang Z. 2005. The study of non-irrigated farmland nitrogen and phosphorus loss course and environmental effect in Shanghai. Yunnan Geographic Environment Research, 19(1): 6-10. (in Chinese) |
[6] | Huang Z H, Xue B, Pang Y. 2006. Change of water environment and its future in Taihu Lake in relation with ecological development in this lake basin. Resources and Environment in the Yangtze Basin, 15(5): 627-631. (in Chinese) |
[7] | Jiao W J, Min Q W, Cheng S K, et al. 2011. Actual nitrogen rate and its multiple effects in rice-wheat rotation system of Taihu Lake Watershed: Empirical analysis based on household survey. Journal of Natural Resources, 26(7): 955-963. (in Chinese) |
[8] |
Jiao W J, Min Q W, Cheng S K, et al. 2013. The Waste Absorption Footprint (WAF): A methodological note on footprint calculations. Ecological Indicators, 34: 356-360.
DOI URL |
[9] |
Jiao W J, Min Q W, Fuller A M, et al. 2014. Evaluating environmental sustainability with the Waste Absorption Footprint (WAF): An application in the Taihu Lake Basin, China. Ecological Indicators, 49: 39-45.
DOI URL |
[10] |
Kalamaras S D, Kotsopoulos T A. 2014. Anaerobic co-digestion of cattle manure and alternative crops for the substitution of maize in South Europe. Bioresource Technology, 172: 68-75.
DOI PMID |
[11] | Li J, Min Q W, Li W H, et al. 2014a. Agricultural pollution of the river-netted plain areas in the Taihu Lake Basin: A case study of Changzhou and Yixing. Journal of Ecology and Rural Environment, 30(2): 167-173. (in Chinese) |
[12] | Li J, Min Q W, Li W H, et al. 2014b. Pollution assessment of rice agriculture in the Taihu Lake Watershed based on the pollution footprint: A case study of Changzhou City and Yixing City, China. Journal of Agricultural Resources and Environment, 31(4): 372-380. (in Chinese) |
[13] | Li Z F, Yan G S, Li H P. 2007. Estimation of nutrient export coefficient from different land use types in Xitiaoxi Watershed. Journal of Soil and Water Conservation, 21(1): 1-5. (in Chinese) |
[14] |
Liu J G, Diamond J. 2005. China’s environment in a globalizing world. Nature, 435(7046): 1179-1186.
DOI URL |
[15] |
Ma L, Feng S Y, Reidsma P, et al. 2014. Identifying entry points to improve fertilizer use efficiency in Taihu Basin, China. Land Use Policy, 37: 52-59.
DOI URL |
[16] |
Ma T, Zhao N, Ni Y, et al. 2020. China’s improving inland surface water quality since 2003. Science Advances, 6(1): eaau3798. DOI: 10.1126/sciadv.aau3798.
DOI URL |
[17] |
Qin B, Xu P, Qu Q, et al. 2007. Environmental issues of Lake Taihu, China. Hydrobiologia, 581: 3-14.
DOI URL |
[18] |
Qin B Q, Paerl H W, Brookes J D, et al. 2019. Why Taihu Lake continues to be plagued with cyanobacterial blooms through 10 years (2007-2017) efforts. Science Bulletin, 64(6): 354-356.
DOI URL |
[19] | Reidsma P, Feng S Y, van Loon M, et al. 2012. Integrated assessment of agricultural land use policies on nutrient pollution and sustainable development in Taihu Basin, China. Environmental Science & Policy, 18: 66-76. |
[20] | Sun W H, Cheng W, Cui Y X, et al. 2009. Overall treatment of water environment for inflow rivers of Taihu Lake. China Resources Comprehensive Utilization, 27(11): 39-42. (in Chinese) |
[21] |
Tang Z, Engel B A, Pijanowski B C, et al. 2005. Forecasting land use change and its environmental impact at a watershed scale. Journal of Environmental Management, 76(1): 35-45.
PMID |
[22] |
Tong Y, Zhang W, Wang X, et al. 2017. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nature Geoscience, 10: 507-511.
DOI URL |
[23] |
Wang H X, Xu J L, Liu X J, et al. 2018. Study on the pollution status and control measures for the livestock and poultry breeding industry in northeastern China. Environmental Science and Pollution Research, 25: 4435-4445.
DOI URL |
[24] |
Wang J L, Fu Z S, Qiao H X, et al. 2019. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Science of the Total Environment, 650 (Part 1): 1392-1402.
DOI URL |
[25] |
Wang L, Cai Y L, Fang L Y. 2009. Pollution in Taihu Lake, China: Causal chain and policy options analyses. Frontiers of Earth Science in China, 3(4): 437-444.
DOI URL |
[26] |
Wang R J, Wang Q B, Dong L S, et al. 2021. Cleaner agricultural production in drinking-water source areas for the control of non-point source pollution in China. Journal of Environmental Management, 285(3): 112096. DOI: 10.1016/j.jenvman.2021.112096.
DOI URL |
[27] |
Wu T F, Qin B Q, Brookes J D, et al. 2019. Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Science of the Total Environment, 650(Part 1): 1554-1565.
DOI URL |
[28] |
Wu Z S, Wang X L, Chen Y W, et al. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment, 612: 914-922.
DOI URL |
[29] | Yan R R, Cheng W, Pang Y, et al. 2009. Study on water quality of Sunan Canal and pollution load of corresponding affecting region. Research of Soil and Water Conservation, 16(5): 135-140. (in Chinese) |
[30] |
Yang S Q, Liu P W. 2010. Strategy of water pollution prevention in Taihu Lake and its effects analysis. Journal of Great Lakes Research, 36(1): 150-158.
DOI URL |
[31] |
Zampella R A, Procopio N A, Lathrop R G, et al. 2007. Relationship of land-use/land-cover patterns and surface-water quality in the Mullica River Basin. Journal of the American Water Resources Association, 43(3): 594-604.
DOI URL |
[32] |
Zhang B L, Cui B H, Zhang S M, et al. 2018. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China. Environmental Science and Pollution Research, 25: 19101-19113.
DOI URL |
[33] | Zhang L M, Xia M F, Zhang L, et al. 2008. Eutrophication status and control strategy of Taihu Lake. Frontiers of Environmental Science & Engineering in China, 2(3): 280-290. |
[1] | 闵庆文, 杨晓, 丁陆彬. 农业文化遗产地文化关键种的概念、内涵和意义[J]. 资源与生态学报, 2022, 13(1): 51-60. |
[2] | INAGAKI Hidehiro, KUBOTA Sakiko, HASEGAWA Kana, UNNO Nahoko, USUI Yukiko, TAKIKAWA Yuichi. 日本虎杖(Fallopia japonica)传统覆盖对茄科作物病害的抑制作用[J]. 资源与生态学报, 2021, 12(6): 869-875. |
[3] | 闵庆文. 农业文化遗产:一个具有良好发展前景的交叉性学科领域[J]. 资源与生态学报, 2021, 12(4): 437-443. |
[4] | 何思源, 丁陆彬, 闵庆文. 重要农业文化遗产在国家公园体制建设和自然保护地体系优化中的角色[J]. 资源与生态学报, 2021, 12(4): 444-452. |
[5] | 马楠, 杨伦, 闵庆文, 白可喻, 李文华. 传统文化对农业生物多样性保护的积极意义:基于全球重要农业文化遗产的视角[J]. 资源与生态学报, 2021, 12(4): 453-461. |
[6] | 丁陆彬, 何思源, 闵庆文, 李禾尧, 马楠, 李文华. 基于Q方法的哈尼梯田地区农民对野生食用植物采集和消费的感知研究[J]. 资源与生态学报, 2021, 12(4): 462-470. |
[7] | 刘某承, 白云霄, 杨伦, 王博杰. 河北宽城传统板栗栽培系统生态补偿标准测算[J]. 资源与生态学报, 2021, 12(4): 471-479. |
[8] | 杨伦, 杨建辉, 焦雯珺, 刘某承, 李文华. 全球重要农业文化遗产(GIAHS)的粮食与生计安全评估——以迭部扎尕那农林牧复合系统为例[J]. 资源与生态学报, 2021, 12(4): 480-488. |
[9] | 王斌, 孙业红, 焦雯珺. 农业文化遗产保护的生态效益评估——以青田稻鱼共生系统为例[J]. 资源与生态学报, 2021, 12(4): 489-497. |
[10] | 焦雯珺, 王博杰, 孙业红, 刘某承. 全球重要农业文化遗产(GIAHS)监测年度报告设计与应用[J]. 资源与生态学报, 2021, 12(4): 498-512. |
[11] | 顾兴国, 焦雯珺, 孙业红, 王斌. 经济发达地区重要农业文化遗产保护的经验、问题与对策——以浙江省为例[J]. 资源与生态学报, 2021, 12(4): 513-521. |
[12] | 李禾尧, 何思源, 丁陆彬, 马楠, 闵庆文. 重要农业文化遗产关键要素识别概念框架:以中国红河哈尼稻作梯田系统为例[J]. 资源与生态学报, 2021, 12(4): 522-531. |
[13] | 王国萍, 杨伦, 刘某承, 李志东, 何思源, 闵庆文. 地方知识在社区的极端气候风险管理中的角色——基于游牧类重要农业文化遗产的研究[J]. 资源与生态学报, 2021, 12(4): 532-542. |
[14] | 孙业红, 宋雨新, 陈跃鑫, 姚灿灿, 李文华. 可持续与否?农业文化遗产地旅游发展之路探索[J]. 资源与生态学报, 2021, 12(4): 543-554. |
[15] | 张永勋, 何璐璐. 产业融合发展推动重要农业文化遗产保护:来自中国的实践[J]. 资源与生态学报, 2021, 12(4): 555-566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||