资源与生态学报 ›› 2022, Vol. 13 ›› Issue (1): 27-33.DOI: 10.5814/j.issn.1674-764x.2022.01.003
收稿日期:
2021-07-21
接受日期:
2021-10-11
出版日期:
2022-01-30
发布日期:
2022-01-08
通讯作者:
钱拴
XU Lingling(), QIAN Shuan(
), ZHAO Xiulan, YAN Hao
Received:
2021-07-21
Accepted:
2021-10-11
Online:
2022-01-30
Published:
2022-01-08
Contact:
QIAN Shuan
About author:
XU Lingling, E-mail: xulingling2001@126.com
Supported by:
摘要:
石漠化是我国西南地区突出的生态环境问题之一,植被恢复是喀斯特地区生态重建和石漠化治理的首要任务。选择植被生产力和覆盖度两个关键指标,基于气象、遥感等多源数据构建了石漠化区植被生态质量监测评估模型,采用差值法和线性趋势法分析了2000-2020年西南滇桂黔三省石漠化区植被生态质量时空变化趋势及对气候变化的响应。结果表明:(1) 2000-2020年滇桂黔石漠化区植被生态质量整体呈波动性上升趋势,2020年植被生态质量指数达69.7,较2000年和2000-2019年平均值分别提高19.9%和9.3%,居2000年以来第四高位。(2) 2000-2020年滇桂黔石漠化区植被生态质量呈改善趋势的面积比例分别为89.2%、99.2%和98.5%,其中云南东南部、贵州大部、广西西北部等地改善明显,植被生态质量指数平均每年增加0.5-0.75。(3)降水量是影响石漠化区植被生态质量的重要气象因子;受气候暖干化趋势影响,云南西北部和中部等地植被生态质量指数上升较慢,局地以平均每年近0.25的速率下降。
徐玲玲, 钱拴, 赵秀兰, 延昊. 2000-2020年西南石漠化区植被生态质量时空变化及对气候变化的响应[J]. 资源与生态学报, 2022, 13(1): 27-33.
XU Lingling, QIAN Shuan, ZHAO Xiulan, YAN Hao. Spatio-temporal Variation of Vegetation Ecological Quality and Its Response to Climate Change in Rocky Desertification Areas in Southwest China during 2000-2020[J]. Journal of Resources and Ecology, 2022, 13(1): 27-33.
Fig. 1 Comparison of vegetation ecological quality index in 2020 with those of perennial (a) and 2019 (b) in rocky desertification areas of Southwest China
Fig. 2 Precipitation differences in 2020 compared with 2019 during March to June (a) and in July (b) in rocky desertification areas of Southwest China Note: Positive means precipitation enhancement; negative means precipitation reduction.
Fig. 4 Spatial distribution of annual average change rate of the vegetation ecological quality index in rocky desertification areas of Southwest China from 2000 to 2020 Note: Positive means vegetation ecological quality improved; negative means vegetation ecological quality worsened.
Fig. 5 Spatial distribution of annual average temperature and precipitation averaged changing rate in rocky desertification areas of Southwest China from 2000 to 2020. Note: Positive means temperature or precipitation in increasing tendency; negative means temperature or precipitation in decreasing tendency.
[1] | Li R L, Wang S J, Xiong K N, et al. 2004. A study on rocky desertification evaluation index system-A case study of Guizhou Province. Tropical Geography, 24(2): 145-149. |
[2] | Li S, Wei X H, Huang J G, et al. 2009. The causes and processes responsible for rocky desertification in Karst areas of Southern China. Sciences in Cold and Arid Regions, 1(1): 80-90. |
[3] | Li S, Wei X H, Zhang S H, et al. 2010. The processes of land rocky desertification in typical Karst mountain area: A case study in the Karst mountain area of North Guangdong. Acta Ecologica Sinica, 30(3): 674-684. (in Chinese) |
[4] | Li X K, He C X. 2002. Comprehensive development of western China and ecological rehabilitation and reconstruction in tropical and subtropical Karst regions. System Sciences and Comprehensive Studies in Agriculture, 18(1): 13-16. (in Chinese) |
[5] | Liu F, He J S, Chen W L. 1999. The ecosystem function of biodiversity. Chinese Bulletin of Botany, 16(6): 671-676. (in Chinese) |
[6] | Lu A M, Dong Y J, Jia C Q. 2013. Spatial and temporal evolution of drought in Yunnan from 2009 to 2011. Guangdong Water Resources and Hydropower, 6: 38-41. (in Chinese) |
[7] | Luo H B, Wei X H, Li S, et al. 2007. Preliminary study on bio-productivity and vegetation features in process of rocky desertification, north of Guangdong Province. Research of Soil and Water Conservation, 14(6): 318-321, 324. (in Chinese) |
[8] | Luo X L, Wang S J, Bai X Y, et al. 2021. Analysis on the spatio-temporal evolution process of rocky desertification in southwest Karst area. Acta Ecologica Sinica, 41(2): 680-693. (in Chinese) |
[9] | Qian S, Cao Y, Yan H, et al. 2019. Grade of monitoring and evaluating for terrestrial vegetation meteorology and ecological quality [Meteorological Industry Standard (No: QX/T 494-2019)]. Beijing, China: Meteorology Publishing House. (in Chinese) |
[10] | Qian S, Yan H, Wu M X, et al. 2020. Dynamic monitoring and evaluation model for spatio-temporal change of comprehensive ecological quality of vegetation. Acta Ecologica Sinica, 40(18): 6573-6583. (in Chinese) |
[11] | Qin X Q, Jiang Z C. 2011. Geoindicator system of Karst rocky desertification. Geological Bulletin of China, 30(11): 1769-1773. (in Chinese) |
[12] | Shi C J. 2012. Analysis of karst rocky desertification process and precipitation evolution characteristics in Southern Guizhou. Journal of Meteorological Research and Application, 33(S1): 136-137. (in Chinese) |
[13] | Su W C. 2002. Controlling model for rocky desertification of Karst mountainous region and its preventing strategy in southwest China. Journal of Soil and Water Conservation, 16(2): 29-32. |
[14] | Tian P J, Wu S J, Xu D D, et al. 2017. Analysis of spatial-temporal variation characteristic of vegetation in Karst rocky desertification area in Guizhou. Journal of Guizhou Meteorology, 41(5): 20-24. (in Chinese) |
[15] | Wang D L, Zhu S Q, Huang B L. 2004. Discussion on the conception and connotation of rocky desertification. Journal of Nanjing Forestry University, 28(6): 87-90. (in Chinese) |
[16] | Wang S J. 2002. Concept deduction and its connotation of Karst rocky desertification. Carsologica Sinica, 21(2): 101-105. (in Chinese) |
[17] | Wu K H, Xiong K N, Rong L, et al. 2007. Characteristics of the process of vegetation restoration under different rocky desertification degrees by comprehensive treatment-A case study of the Huajiang Gorge Area, Guizhou Province. Earth and Environment, 35(4): 327-335. (in Chinese) |
[18] | Xiao R B, Ouyang Z Y, Wang X K, et al. 2005. Sensitivity of rocky desertification and its spatial distribution in southwestern China. Chinese Journal of Ecology, 24(5): 551-554. (in Chinese) |
[19] |
Yan H, Wang S Q, Billesbach D, et al. 2015. Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants. Ecological Modelling, 297: 42-59.
DOI URL |
[20] | Yang C B, Wang Z H. 2007. Study on rocky desertification and its comprehensive management in Southwest China. Agro-Environment & Development, 5: 9-13. (in Chinese) |
[21] | Yang H, Song J, Yan H M, et al. 2012. Cause of the severe drought in Yunnan Province during winter of 2009 to 2010. Climate and Environmental Research, 17(3): 315-326. |
[22] | Zeng B, Gao W, Yang T B. 2014. Spatial-temporal variations of MODIS-NDVI and its correlations with climate in Delingha Region, Qaidam Basin. Journal of Lanzhou University (Natural Sciences), 50(1): 80-88. (in Chinese) |
[1] | 马伟东, 刘峰贵, 周强, 陈琼, 张存桂, 刘飞, 李燕燕, 赵佩. 青藏高原洪涝灾害的临界雨量估算[J]. 资源与生态学报, 2021, 12(5): 600-608. |
[2] | USOLTSEV Vladimir Andreevich, SHOBAIRI Seyed Omid Reza, TSEPORDEY Ivan Stepanovich, AHRARI Amirhossein, 张猛, SHOAIB Ahmad Anees, CHASOVSKICHH Viktor Petrovich. 天然林和人工林生物量对温度和降水变化的响应是否存在差异?以欧亚大陆两针松为例[J]. 资源与生态学报, 2020, 11(4): 331-341. |
[3] | 杨屹涵, 王军邦, 刘鹏, 芦光新, 李英年. 气候变化主导高寒脆弱生态系统净初级生产力年际变化趋势[J]. 资源与生态学报, 2019, 10(4): 379-388. |
[4] | 柏永青,王卷乐,王玉洁,韩雪华. 基于TRMM降水数据的1998-2015年“一带一路”干旱时空分布[J]. 资源与生态学报, 2017, 8(6): 559-570. |
[5] | 柴曦, 石培礼, 宗宁, 牛犇, 何永涛, 张宪洲. 西藏高原高寒嵩草草甸在不同降雨条件下CO2通量的生物物理调节机制[J]. 资源与生态学报, 2017, 8(1): 30-41. |
[6] | 付刚, 孙维, 李少伟, 张晶, 余成群, 沈振西. 利用MODIS影像和气候数据模拟青藏高原草地地上生物量[J]. 资源与生态学报, 2017, 8(1): 42-49. |
[7] | 展小云, 于贵瑞, 何念鹏. 植被功能型、气候和土壤氮素对中国东部南北样带叶片氮浓度空间格局的影响[J]. 资源与生态学报, 2013, 4(2): 125-131. |
[8] | 李兰海, 白磊, 姚亚楠, 杨青, 赵鑫. IPCC SRES情景下新疆未来气候变化格局分析[J]. 资源与生态学报, 2013, 4(1): 27-35. |
[9] | 刘军志, 朱阿兴, 段峥. TRMM 3B42降水产品在鄱阳湖流域梅川江子流域的精度评价[J]. 资源与生态学报, 2012, 3(4): 359-366. |
[10] | 武建双, 张宪洲, 沈振西, 石培礼, 余成群, 宋明华, 李晓佳. 藏北高原高寒草地围栏禁牧和生长季降水对物种丰富度和多样性的影响[J]. 资源与生态学报, 2012, 3(3): 236-242. |
[11] | 李淼, 夏军, 孟德娟. 北京地区长序列季节尺度降水研究[J]. 资源与生态学报, 2012, 3(1): 64-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||