资源与生态学报 ›› 2022, Vol. 13 ›› Issue (1): 2-16.DOI: 10.5814/j.issn.1674-764x.2022.01.001
刘金勋1,*(), 卢学鹤2, 朱求安3, 袁文平4, 苑全治5, 张臻6, 国庆喜7, DEERING Carol8
收稿日期:
2021-08-16
接受日期:
2021-10-14
出版日期:
2022-01-30
发布日期:
2022-01-08
通讯作者:
刘金勋
LIU Jinxun1,*(), LU Xuehe2, ZHU Qiuan3, YUAN Wenping4, YUAN Quanzhi5, ZHANG Zhen6, GUO Qingxi7, DEERING Carol8
Received:
2021-08-16
Accepted:
2021-10-14
Online:
2022-01-30
Published:
2022-01-08
Contact:
LIU Jinxun
Supported by:
摘要:
全球动态植被模型(DGVM)是研究生态系统复杂过程和全球变化的强有力工具。本文基于过去20多年全球已发表的文献,对得到广泛关注和应用的DGVM之一——集成生物圈模拟器(Integrated Biosphere Simulator, IBIS)的开发、改进、发展及应用进行了总结。IBIS是一个在全球变化等多领域中有着广泛应用的模型。自1996年诞生以来,IBIS在陆地生态系统的碳、氮、水循环,植被动态、陆气耦合、水域系统耦合和气候变化影响等多个方面取得了验证和应用。本文较为系统地阐述了IBIS模型在V2.5版本后的不同发展方向,主要针对IBIS模型在水文过程(蒸散、土壤水分、地下水、径流)、植被动态(植被功能型、土地覆盖变化)、植被生理过程(植被物候、光合作用、植被生长、碳分配)、土壤生物地球化学过程(土壤碳氮循环及反馈、温室气体排放等)以及包括土地利用变化、干扰与管理等人类活动过程等方面的改进与发展进行了全面的综述;在此基础上,对模型在生态系统生产力、碳水收支、水分利用效率、温室气体排放、自然干扰(干旱、火灾、虫害)和人类活动(土地利用变化、农业经营)等方面的应用,以及模型的技术性改进方面进行了回顾;最后对模型的前景和进一步发展提出了一些见解。
刘金勋, 卢学鹤, 朱求安, 袁文平, 苑全治, 张臻, 国庆喜, DEERING Carol. 陆地生态系统模拟研究中IBIS模型开发应用的回顾和展望[J]. 资源与生态学报, 2022, 13(1): 2-16.
LIU Jinxun, LU Xuehe, ZHU Qiuan, YUAN Wenping, YUAN Quanzhi, ZHANG Zhen, GUO Qingxi, DEERING Carol. Terrestrial Ecosystem Modeling with IBIS: Progress and Future Vision[J]. Journal of Resources and Ecology, 2022, 13(1): 2-16.
Application region | Number of publications | Model name | Number of publications | Ecosystem | Number of publications | Research focus* | Number of publications | |
---|---|---|---|---|---|---|---|---|
Canada-United States | 98 | IBIS | 177 | Multiple | 173 | Model Dev. | 52 | |
Global | 70 | Agro-IBIS | 52 | Forest land | 93 | Hydrology | 36 | |
China | 67 | CCM3-IBIS | 23 | Cropland | 68 | Vegetation | 25 | |
Amazon/Brazil | 59 | GENESIS-IBIS | 9 | Grassland | 8 | NPP | 25 | |
Africa | 22 | RegCM3-IBIS | 9 | Wetland | 4 | LUCC/Disturb. | 23 | |
India | 19 | MRCB-IBIS | 9 | Savanna | 2 | Phenology | 11 | |
Australia | 3 | TRIPLEX-GHG | 8 | Desert | 1 | Eco. Service | 9 | |
Europe | 3 | Can-IBIS | 5 | Oil sand | 1 | Nitrogen loss | 6 | |
Other | 16 | Other | - | Other | - | CH4/N2O | 5 |
Table 1 Summary of IBIS model publications by study region, model name, ecosystem type, and research focus.
Application region | Number of publications | Model name | Number of publications | Ecosystem | Number of publications | Research focus* | Number of publications | |
---|---|---|---|---|---|---|---|---|
Canada-United States | 98 | IBIS | 177 | Multiple | 173 | Model Dev. | 52 | |
Global | 70 | Agro-IBIS | 52 | Forest land | 93 | Hydrology | 36 | |
China | 67 | CCM3-IBIS | 23 | Cropland | 68 | Vegetation | 25 | |
Amazon/Brazil | 59 | GENESIS-IBIS | 9 | Grassland | 8 | NPP | 25 | |
Africa | 22 | RegCM3-IBIS | 9 | Wetland | 4 | LUCC/Disturb. | 23 | |
India | 19 | MRCB-IBIS | 9 | Savanna | 2 | Phenology | 11 | |
Australia | 3 | TRIPLEX-GHG | 8 | Desert | 1 | Eco. Service | 9 | |
Europe | 3 | Can-IBIS | 5 | Oil sand | 1 | Nitrogen loss | 6 | |
Other | 16 | Other | - | Other | - | CH4/N2O | 5 |
[1] |
Aber J D, Nadelhoffer K J, Steudler P, et al. 1989. Nitrogen saturation in northern forest ecosystems. BioScience, 39(6): 378-386.
DOI URL |
[2] |
Bonilla C A, Norman J A, Molling C C. 2007. Water erosion estimation in topographically complex landscapes: Model description and first verifications. Soil Science Society of America Journal, 71(5): 1524-1537.
DOI URL |
[3] | Booth E G, Qiu J X, Carpenter S R, et al. 2016. From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale. Environmental Modelling & Software, 85: 80-97. |
[4] |
Botta A, Foley J A. 2002. Effects of climate variability and disturbances on the Amazonian terrestrial ecosystems dynamics. Global Biogeochemical Cycles, 16(4): 18-1-18-11. DOI: 10.1029/2000GB001338.
DOI |
[5] |
Caldararu S, Purves D W, Smith M J. 2016. The effect of using the plant functional type paradigm on a data-constrained global phenology model. Biogeosciences, 13(4): 925-941.
DOI URL |
[6] |
Cao X, Zhou Z, Chen X, et al. 2015. Improving leaf area index simulation of IBIS model and its effect on water carbon and energy-A case study in Changbai Mountain broadleaved forest of China. Ecological Modelling, 303: 97-104.
DOI URL |
[7] |
Castanho A D A, Coe M T, Costa M H, et al. 2013. Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences, 10(4): 2255-2272.
DOI URL |
[8] |
Chang K H, Price D T, Chen J M, et al. 2014. Simulating impacts of water stress on woody biomass in the southern boreal region of western Canada using a dynamic vegetation model. Agricultural and Forest Meteorology, 198-199: 142-154.
DOI URL |
[9] | Chen M, Willgoose G R, Saco P M. 2011. Estimating temporal soil moisture dynamics using the HYDRUS-1D and IBIS models. In: Valentine E M (ed.). Balance and uncertainty-Water in a changing world. Proceedings of the 34th IAHR Congress. Brisbane, Australia: International Association of Hydraulic Engineering & Research, https://espace.library.uq.edu.au/view/UQ:243193. |
[10] |
Chen M, Willgoose G R, Saco P M. 2015. Investigating the impact of leaf area index temporal variability on soil moisture predictions using remote sensing vegetation data. Journal of Hydrology, 522: 274-284.
DOI URL |
[11] |
Coe M T, Costa M H, Botta A. 2002. Long-term simulations of discharge and floods in the Amazon Basin. Journal of Geophysical Research: Atmospheres, 107(D20): LBA 11-1-LBA 11-17. DOI: 10.1029/2001JD000740.
DOI |
[12] |
Coe M T, Foley J A. 2001. Human and natural impacts on the water resources of the Lake Chad Basin. Journal of Geophysical Research: Atmospheres, 106(D4): 3349-3356.
DOI URL |
[13] |
Cunha A P M A, Alvalá R C S, de Oliveira G S. 2013a. The impact of land cover change on land surface processes in the semiarid of Brazil. Revista Brasileira de Meteorologia, 28(2): 139-152.
DOI URL |
[14] |
Cunha A P M A, Alvalá R C S, Sampaio G, et al. 2013b. Calibration and validation of the integrated biosphere simulator (IBIS) for a Brazilian semiarid region. Journal of Applied Meteorology and Climatology, 52(12): 2753-2770.
DOI URL |
[15] |
Cunha A P M A, Alvalá R C S, Kubota P Y, et al. 2015. Impacts of land use and land cover changes on the climate over Northeast Brazil. Atmospheric Science Letters, 16(3): 219-227.
DOI URL |
[16] |
Dalenberg J W, Jager G. 1989. Priming effect of some organic additions to 14C-labelled soil. Soil Biology and Biochemistry, 21(3): 443-448.
DOI URL |
[17] |
Delire C, Foley J A. 1999. Evaluating the performance of a land surface/ ecosystem model with biophysical measurements from contrasting environments. Journal of Geophysical Research: Atmospheres, 104 (D14): 16895-16909.
DOI URL |
[18] | Dennis H E B, Ward A S, Balson T, et al. 2017. High performance computing enabled simulation of the food-water-energy system. In: PEARC17. Proceedings of the practice and experience in advanced research computing 2017 on sustainability, success and impact. New Orleans, USA: The Association for Computing Machinery. |
[19] |
Donner S D, Coe M T, Lenters J D, et al. 2002. Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994. Global Biogeochemical Cycles, 16(3): 16-1-16-19. DOI: 10.1029/2001gb001396.
DOI |
[20] |
Donner S D, Kucharik C J. 2003. Evaluating the impacts of land management and climate variability on crop production and nitrate export across the Upper Mississippi Basin. Global Biogeochemical Cycles, 17(3): 11-1-11-16. DOI: 10.1029/2001gb001808.
DOI |
[21] |
Donner S D, Kucharik C J. 2008. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proceedings of the National Academy of Sciences of the USA, 105(11): 4513-4518.
DOI URL |
[22] |
El Maayar M, Chen J M, Price D T. 2008. On the use of field measurements of energy fluxes to evaluate land surface models. Ecological Modelling, 214(2): 293-304.
DOI URL |
[23] |
El Maayar M, Price D T, Chen J M. 2009. Simulating daily, monthly and annual water balances in a land surface model using alternative root water uptake schemes. Advances in Water Resources, 32(9): 1444-1459.
DOI URL |
[24] |
El Maayar M, Price D T, Delire C, et al. 2001. Validation of the Integrated Biosphere Simulator over Canadian deciduous and coniferous boreal forest stands. Journal of Geophysical Research: Atmospheres, 106(D13): 14339-14355.
DOI URL |
[25] |
El Maayar M, Sonnentag O. 2009. Crop model validation and sensitivity to climate change scenarios. Climate Research, 39(1): 47-59.
DOI URL |
[26] |
Faria B L D, Brando P M, Macedo M N. 2017. Current and future patterns of fire-induced forest degradation in Amazonia. Environmental Research Letters, 12(9): 095005. DOI: 10.1088/1748-9326/aa69ce.
DOI URL |
[27] | Foley J A, Kucharik C J, Polzin D. 2005. Integrated biosphere simulator model (IBIS), Version 2.5. ORNL distributed active archive center datasets. Oak Ridge, USA: ORNL DAAC. |
[28] |
Foley J A, Prentice I C, Ramankutty N, et al. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10(4): 603-628.
DOI URL |
[29] |
Fu Y, Zhang H, Dong W, et al. 2014. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere. Plos One, 9(10): e109544. DOI: 10.1371/journal.pone.0109544.
DOI URL |
[30] |
Fu Y, Zheng Z, Shi H, et al. 2016. A novel large-scale temperature dominated model for predicting the end of the growing season. Plos One, 11(11): e0167302. DOI: 10.1371/journal.pone.0167302.
DOI URL |
[31] | Gao Y, Zhang W. 2009. Modification of IBIS and distributed simulation of eco-hydrological progress with it in multi-scale watersheds. Journal of Natural Resources, 24(10): 1757-1763. (in Chinese) |
[32] |
Grace J, Berninger F, Nagy L. 2002. Impacts of climate change on the tree line. Annals of Botany, 90(4): 537-544.
PMID |
[33] |
Granberg G, Grip H, Löfvenius M O, et al. 1999. A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires. Water Resources Research, 35(12): 3771-3782.
DOI URL |
[34] |
Guo L, Guo Q. 2013a. Simulation of soil respiration in forests at the catchment scale in the eastern part of northeast China. Acta Ecologica Sinica, 33(13): 4090-4100. (in Chinese)
DOI URL |
[35] |
Guo L, Shan N, Zhang Y, et al. 2019. Separating the effects of climate change and human activity on water use efficiency over the Beijing-Tianjin sand source region of China. Science of the Total Environment, 690: 584-595.
DOI URL |
[36] | Guo L J, Guo Q X. 2013b. Simulation of net primary productivity in forests at catchment scale in the east part of northeastern China using IBIS. Journal of Beijing Forestry University, 35(5): 1-7. (in Chinese) |
[37] | Guo Q, Zhang H, Wang X, et al. 2010. Simulation of soil respiration for typical forests in northeast China: Localized application of IBIS. Acta Ecologica Sinica, 30(9): 2295-2303. (in Chinese) |
[38] |
Higgins P A T. 2007. Biodiversity loss under existing land use and climate change: An illustration using northern South America. Global Ecology and Biogeography, 16(2): 197-204.
DOI URL |
[39] |
Huang S L, Ramirez C, Conway S, et al. 2017. Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA. Canadian Journal of Forest Research, 47(1): 113-124.
DOI URL |
[40] |
Huntley B. 1991. How plants respond to climate change: Migration rates, individualism and the consequences for plant communities. Annals of Botany, 67(S1): 15-22.
DOI URL |
[41] | Kennedy C. 2007. The power to conserve forests-Burn biomass for clean energy, not in wildfires. California Forests, 11(2): 8-9. |
[42] |
Kim Y. 2005. Modeling seasonal vegetation variation and its validation against Moderate Resolution Imaging Spectroradiometer (MODIS) observations over North America. Journal of Geophysical Research: Atmospheres, 110(D4): D04106. DOI: 10.1029/2004jd005436.
DOI |
[43] | Kim Y, Eltahir E A B. 2004. Role of topography in facilitating coexistence of trees and grasses within savannas. Water Resources Research, 40(7): W075051-W0750513. |
[44] |
Kucharik C J. 2003. Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the US Corn Belt: Simulations of the interannual variability in maize yield. Earth Interactions, 7: 14. DOI: 10.1175/1087-3562(2003)007<0001:EOAPAM>2.0.CO;2.
DOI |
[45] |
Kucharik C J, Barford C C, Maayar M E, et al. 2006. A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange. Ecological Modelling, 196(1-2): 1-31.
DOI URL |
[46] |
Kucharik C J, Brye K R. 2003. Integrated biosphere simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. Journal of Environmental Quality, 32(1): 247-268.
DOI URL |
[47] |
Kucharik C J, Foley J A, Délire C, et al. 2000. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 14(3): 795-825.
DOI URL |
[48] |
Kucharik C J, Twine T E. 2007. Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agricultural and Forest Meteorology, 146(3): 134-158.
DOI URL |
[49] |
Kumar M, Rawat S P S, Singh H. 2018. Dynamic forest vegetation models for predicting impacts of climate change on forests: An Indian perspective. Indian Journal of Forestry, 41(1): 1-12.
DOI URL |
[50] |
Landry J S, Price D T, Ramankutty N. 2016. Implementation of a Marauding Insect Module (MIM, version 1.0) in the Integrated BIosphere Simulator (IBIS, version 2.6 b4) dynamic vegetation-land surface model. Geoscientific Model Development, 9(3): 1243-1261.
DOI URL |
[51] |
Lassalle G, Crouzet P, Rochard E. 2009. Modelling the current distribution of European diadromous fishes: An approach integrating regional anthropogenic pressures. Freshwater Biology, 54(3): 587-606.
DOI URL |
[52] |
Li K Y, Coe M T, Ramankutty N, et al. 2007. Modeling the hydrological impact of land-use change in west Africa. Journal of Hydrology, 337(3-4): 258-268.
DOI URL |
[53] |
Li M X, Peng C H, Zhou X L, et al. 2019. Modeling global riverine DOC flux dynamics from 1951 to 2015. Journal of Advances in Modeling Earth Systems, 11(2): 514-530.
DOI URL |
[54] |
Lima L S, Coe M T, Soares B S, et al. 2014. Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: Implications for the provision of ecosystem services. Landscape Ecology, 29(2): 261-274.
DOI URL |
[55] |
Liu D, Chen Y, Cai W, et al. 2014. The contribution of China’s Grain to Green Program to carbon sequestration. Landscape Ecology, 29(10): 1675-1688.
DOI URL |
[56] |
Liu J, Price D T, Chen J M. 2005. Nitrogen controls on ecosystem carbon sequestration: A model implementation and application to Saskatchewan, Canada. Ecological Modelling, 186(2): 178-195.
DOI URL |
[57] |
Liu J, Sleeter B M, Zhu Z, et al. 2016. Estimating carbon sequestration in the piedmont ecoregion of the United States from 1971 to 2010. Carbon Balance and Management, 11(1): 10. DOI: 10.1186/s13021-016-0052-y.
DOI URL |
[58] |
Liu J, Sleeter B M, Zhu Z, et al. 2020. Critical land change information enhances the understanding of carbon balance in the United States. Global Change Biology, 26(7): 3920-3929.
DOI URL |
[59] |
Liu J, Vogelmann J E, Zhu Z, et al. 2011a. Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951-2000. Ecological Modelling, 222(14): 2333-2341.
DOI URL |
[60] | Liu X, Guo Q, Liu J. 2011b. Sensitivity analysis for main factors influencing NPP of forests simulated by IBIS in the eastern area of Northeast China. Acta Ecologica Sinica, 31(7): 1772-1782. (in Chinese) |
[61] |
Liu X, Guo Q, Wang C. 2011c. Simulating net primary production and soil-surface CO2 flux of temperate forests in northeastern China. Scandinavian Journal of Forest Research, 26(1): 30-39.
DOI URL |
[62] |
Lu H, Yuan W, Chen X. 2019a. A processes-based dynamic root growth model integrated into the ecosystem model. Journal of Advances in Modeling Earth Systems, 11(12): 4614-4628.
DOI URL |
[63] | Lu X, Jiang H, Liu J, et al. 2014. Comparing simulated carbon budget of a Lei bamboo forest with flux tower data. Terrestrial, Atmospheric and Oceanic Sciences, 25(3): 359-368. |
[64] |
Lu X, Jiang H, Liu J, et al. 2016. Simulated effects of nitrogen saturation on the global carbon budget using the IBIS model. Scientific Reports, 6: 39173. DOI: 10.1038/srep39173.
DOI URL |
[65] |
Lu X, Ju W, Jiang H, et al. 2019b. Effects of nitrogen deposition on water use efficiency of global terrestrial ecosystems simulated using the IBIS model. Ecological Indicators, 101: 954-962.
DOI URL |
[66] |
Ma W, Wu T, Wu X, et al. 2021. Warming could shift steppes to carbon sinks and meadows to carbon sources in permafrost regions: Evidence from the improved IBIS model. Catena, 200: 105168. DOI: 10.1016/j.catena.2021.105168.
DOI URL |
[67] |
Marcella M P, Eltahir E A B. 2014. Introducing an irrigation scheme to a regional climate model: A case study over west Africa. Journal of Climate, 27(15): 5708-5723.
DOI URL |
[68] |
Merckx R, Dijkstra A den Hartog A, et al. 1987. Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biology and Fertility of Soils, 5(2): 126-132.
DOI URL |
[69] |
Murthy I K, Tiwari R, Ravindranath N H. 2011. Climate change and forests in India: Adaptation opportunities and challenges. Mitigation and Adaptation Strategies for Global Change, 16(2): 161-175.
DOI URL |
[70] |
Mykleby P M, Lenters J D, Cutrell G J, et al. 2016. Energy and water balance response of a vegetated wetland to herbicide treatment of invasive Phragmites australis. Journal of Hydrology, 539: 290-303.
DOI URL |
[71] |
Parton W J, Schimel D S, Cole C V, et al. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51(5): 1173-1179.
DOI URL |
[72] |
Pereira M P S, Mendes K R, Justino F, et al. 2020. Brazilian dry forest (Caatinga) response to multiple ENSO: The role of Atlantic and Pacific Ocean. Science of the Total Environment, 705: 135717. DOI: 10.1016/j.scitotenv.2019.135717.
DOI URL |
[73] |
Pires G F, Abrahão G M, Brumatti L M, et al. 2016. Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in Northern Brazil. Agricultural and Forest Meteorology, 228-229: 286-298.
DOI URL |
[74] |
Powell T L, Galbraith D R, Christoffersen B O, et al. 2013. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytologist, 200(2): 350-365.
DOI URL |
[75] |
Qiu J X, Carpenter S R, Booth E G, et al. 2020. Spatial and temporal variability of future ecosystem services in an agricultural landscape. Landscape Ecology, 35(11): 2569-2586.
DOI URL |
[76] | Ren P, Hong B T, Ma W L, et al. 2016. Ecological value estimation of cultivated land based on the IBIS model: A case study of Chongzhou City. Geographical Research, 35(12): 2395-2406. (in Chinese) |
[77] |
Rondinelli W J, Hornbuckle B K, Patton J C, et al. 2015. Different rates of soil drying after rainfall are observed by the SMOS satellite and the south fork in situ soil moisture network. Journal of Hydrometeorology, 16(2): 889-903.
DOI URL |
[78] | Sacks W J, Kucharik C J. 2011. Crop management and phenology trends in the US Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology, 151(7): 882-894. |
[79] |
Schimel J P, Jackson L E, Firestone M K. 1989. Spatial and temporal effects on plant-microbial competition for inorganic nitrogen in a California annual grassland. Soil Biology and Biochemistry, 21(8): 1059-1066.
DOI URL |
[80] |
Schneider A, Logan K E, Kucharik C J. 2012. Impacts of urbanization on ecosystem goods and services in the U.S. Corn Belt. Ecosystems, 15(4): 519-541.
DOI URL |
[81] |
Senna M C A, Costa M H, Shimabukuro Y E. 2005. Fraction of photosynthetically active radiation absorbed by Amazon tropical forest: A comparison of field measurements, modeling, and remote sensing. Journal of Geophysical Research: Biogeosciences, 110(G1): G01008. DOI: 10.1029/2004jg000005.
DOI |
[82] |
Sharma J, Upgupta S, Jayaraman M, et al. 2017. Vulnerability of forests in India: A national scale assessment. Environmental Management, 60(3): 544-553.
DOI URL |
[83] |
Song C, Luan J, Xu X, et al. 2020. A microbial functional group-based CH4 model integrated into a terrestrial ecosystem model: Model structure, site-level evaluation, and sensitivity analysis. Journal of Advances in Modeling Earth Systems, 12(4): e2019MS001867. DOI: 10.1029/2019MS001867.
DOI |
[84] | Soylu M E, Kucharik C J, Loheide S P. 2014. Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem-Variably saturated soil water flow model. Agricultural and Forest Meteorology, 189: 198-210. |
[85] |
Stöckli R, Rutishauser T, Dragoni D. 2008. Remote sensing data assimilation for a prognostic phenology model. Journal of Geophysical Research: Biogeosciences, 113(G4): G04021. DOI: 10.1029/2008JG000781.
DOI |
[86] |
Strand J, Soares B, Costa M H, et al. 2018. Spatially explicit valuation of the Brazilian Amazon Forest’s ecosystem services. Nature Sustainability, 1(11): 657-664.
DOI URL |
[87] |
Sun J, Twine T E, Hill J, et al. 2017. Effects of land use change for crops on water and carbon budgets in the Midwest USA. Sustainability, 9(2): 225. DOI: 10.3390/su9020225.
DOI URL |
[88] |
Twine T E, Bryant J J, Richter K T, et al. 2013. Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA. Global Change Biology, 19(9): 2838-2852.
DOI URL |
[89] |
Twine T E, Kucharik C J. 2008. Evaluating a terrestrial ecosystem model with satellite information of greenness. Journal of Geophysical Research: Biogeosciences, 113(G3): G03027. DOI: 10.1029/2007jg000599.
DOI |
[90] |
Twine T E, Kucharik C J. 2009. Climate impacts on net primary productivity trends in natural and managed ecosystems of the central and eastern United States. Agricultural and Forest Meteorology, 149(12): 2143-2161.
DOI URL |
[91] |
Twine T E, Kucharik C J, Foley J A. 2004. Effects of land cover change on the energy and water balance of the Mississippi River Basin. Journal of Hydrometeorology, 5(4): 640-655.
DOI URL |
[92] | Van Loocke A, Bernacchi C J, Twine T E. 2010. The impacts of Miscanthus×giganteus production on the Midwest US hydrologic cycle. GCB Bioenergy, 2(4): 180-191. |
[93] |
Van Loocke A, Twine T E, Zeri M, et al. 2012. A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agricultural and Forest Meteorology, 164: 82-95.
DOI URL |
[94] |
Wang B, Niu X, Wei W J. 2020. National forest ecosystem inventory system of China: Methodology and applications. Forests, 11(7): 732. DOI: 10.3390/f11070732.
DOI URL |
[95] |
Wang K F, Peng C H, Zhu Q A, et al. 2017. Modeling global soil carbon and soil microbial carbon by integrating microbial processes into the ecosystem process model TRIPLEX-GHG. Journal of Advances in Modeling Earth Systems, 9(6): 2368-2384.
DOI URL |
[96] | Wang P. 2009. Simulation of forest net primary productivity in northeastern China with IBIS. Acta Ecologica Sinica, 29(6): 3213-3220. (in Chinese) |
[97] |
Wang X C, Wang C K, Yu G R. 2008. Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements. Science in China (Earth Sciences), 51(8): 1129-1143.
DOI URL |
[98] |
Wania R, Ross I, Prentice I C. 2009. Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Global Biogeochemical Cycles, 23(3): GB3014. DOI: 10.1029/2008gb003412.
DOI |
[99] |
Xia J, Chen Y, Liang S, et al. 2015. Global simulations of carbon allocation coefficients for deciduous vegetation types. Tellus: Chemical and Physical Meteorology, 6(1): 28016. DOI: 10.3402/tellusb.v67.28016.
DOI |
[100] |
Xia J Y, Luo Y Q, Wang Y P, et al. 2012. A semi-analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to steady state. Geoscientific Model Development, 5(5): 1259-1271.
DOI URL |
[101] |
Xu H, Twine T E, Yang X. 2014. Evaluating remotely sensed phenological metrics in a dynamic ecosystem model. Remote Sensing, 6(6): 4660-4686.
DOI URL |
[102] |
Xue B L, Guo Q, Hu T, et al. 2017. Evaluation of modeled global vegetation carbon dynamics: Analysis based on global carbon flux and above-ground biomass data. Ecological Modelling, 355: 84-96.
DOI URL |
[103] | Yang Y Z, Ma Y D, Jiang H, et al. 2016. Evaluating the carbon budget pattern of Chinese terrestrial ecosystem from 1960 to 2006 using Integrated Biosphere Simulator. Acta Ecologica Sinica, 36(13): 3911-3922. (in Chinese) |
[104] |
Yuan Q Z, Wu S, Dai E, et al. 2017. NPP vulnerability of the potential vegetation of China to climate change in the past and future. Journal of Geographical Sciences, 27(2): 131-142.
DOI URL |
[105] |
Yuan Q Z, Wu S, Zhao D, et al. 2014a. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005. Journal of Geographical Sciences, 24(1): 3-17.
DOI URL |
[106] |
Yuan Q Z, Zhao D S, Wu S H, et al. 2011. Validation of the Integrated Biosphere Simulator in simulating the potential natural vegetation map of China. Ecological Research, 26(5): 917-929.
DOI URL |
[107] | Yuan W, Liu D, Dong W, et al. 2014b. Multiyear precipitation reduction strongly decreases carbon uptake over northern China. Journal of Geophysical Research: Biogeosciences, 119(5): 881-896. |
[108] |
Zeng B, Zhang F, Wei L, et al. 2021. An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau. Catena, 206: 105479. DOI: 10.1016/j.catena.2021.105479.
DOI URL |
[109] |
Zhang K, de Almeida Castanho A D, Galbraith D R, et al. 2015. The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use. Global Change Biology, 21(7): 2569-2587.
DOI PMID |
[110] | Zhang K, Peng C, Wang M, et al. 2017. Process-based TRIPLEX-GHG model for simulating N2O emissions from global forests and grasslands: Model development and evaluation. Journal of Advances in Modeling Earth Systems, 9(5): 2079-2102. |
[111] | Zhang X M, Zhang X Y, Zhu Q, et al. 2016. Spatial distribution simulation and the climate effects of aerobic methane emissions from terrestrial plants in China. Acta Ecologica Sinica, 36(3): 580-591. (in Chinese) |
[112] |
Zhang X Y, Lu X H, Wang P Y, et al. 2021. Research on the development and utilization of China’s low-carbon land oriented to carbon neutrality. Journal of Natural Resources, in press. DOI: 10.31497/zrzyxb.20211200.
DOI |
[113] |
Zhang Z, Jiang H, Liu J, et al. 2011. Modeling the spatial-temporal dynamics of water use efficiency in Yangtze River Basin using IBIS model. Acta Ecologica Sinica, 31(5): 246-253. (in Chinese)
DOI URL |
[114] |
Zhang Z, Jiang H, Liu J, et al. 2012. Assessment on water use efficiency under climate change and heterogeneous carbon dioxide in China terrestrial ecosystems. Procedia Environmental Sciences, 13: 2031-2044.
DOI URL |
[115] |
Zhang Z, Jiang H, Liu J, et al. 2013a. Effect of heterogeneous atmospheric CO2 on simulated global carbon budget. Global and Planetary Change, 101: 33-51.
DOI URL |
[116] | Zhang Z, Jiang H, Liu J, et al. 2013b. Implications of future water use efficiency for ecohydrological responses to climate change and spatial heterogeneity of atmospheric CO2 in China. Terrestrial, Atmospheric and Oceanic Sciences, 24(3): 451-465. |
[117] |
Zhang Z, Jiang H, Liu J, et al. 2014. An analysis of the global spatial variability of column-averaged CO2 from SCIAMACHY and its implications for CO2 sources and sinks. International Journal of Remote Sensing, 35(6): 2047-2066.
DOI URL |
[118] |
Zheng Z, Wang G. 2007. Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia. Journal of Geophysical Research: Biogeosciences, 112(G4): G04012. DOI: 10.1029/2007JG000413.
DOI |
[119] |
Zipper S C, Soylu M E, Kucharik C J, et al. 2017. Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI): A complete critical zone model. Ecological Modelling, 359: 201-219.
DOI URL |
[120] |
Zhu Q, Liu J, Peng C, et al. 2014. Modelling methane emissions from natural wetlands by development and application of the TRIPLEX- GHG model. Geoscientific Model Development, 7(3): 981-999.
DOI URL |
[121] |
Zhu Q, Peng C, Ciais P, et al. 2017. Interannual variation in methane emissions from tropical wetlands triggered by repeated El Nino Southern Oscillation. Global Change Biology, 23(11): 4706-4716.
DOI URL |
[122] |
Zhu Q, Peng C, Liu J, et al. 2016. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports, 6: 38020. DOI: 10.1038/srep38020.
DOI URL |
[123] |
Zhu Q, Peng C H, Chen H, et al. 2015. Estimating global natural wetland methane emissions using process modelling: Spatio-temporal patterns and contributions to atmospheric methane fluctuations. Global Ecology and Biogeography, 24(8): 959-972.
DOI URL |
[1] | 田洁, 熊俊楠, 张一驰, 程维明, 何豫川, 叶冲冲, 贺文. 定量评估气候变化和人类活动对阿勒泰地区草地净初级生产力的影响[J]. 资源与生态学报, 2021, 12(6): 743-756. |
[2] | 张梦宇, 张黎, 任小丽, 何洪林, 吕妍, 王军邦, 闫慧敏. 中国西南地区土地利用/覆盖变化对净初级生产力的影响:以环江毛南族自治县为例[J]. 资源与生态学报, 2020, 11(6): 606-616. |
[3] | 杨屹涵, 王军邦, 刘鹏, 芦光新, 李英年. 气候变化主导高寒脆弱生态系统净初级生产力年际变化趋势[J]. 资源与生态学报, 2019, 10(4): 379-388. |
[4] | 孙雷刚, 王绍强, A.MICKLER Rober, 陈敬华, 于泉洲, 钱钊晖, 周国逸, 孟泽. 基于遥感指数的中国南亚热带常绿林光合作用季节动态变化研究[J]. 资源与生态学报, 2019, 10(2): 112-126. |
[5] | 罗艺伟, 张雷明, 郭学兵, 戴冠华, 王安志, 周国逸, 于贵瑞. 温带阔叶红松林和南亚热带常绿林生态系统碳分配的比较研究[J]. 资源与生态学报, 2018, 9(6): 642-653. |
[6] | 段呈,石培礼,张宪洲,宗宁,柴曦,耿守保,朱婉芮. 冈仁波齐圣地景观区的草地承载力和载蓄率变化[J]. 资源与生态学报, 2017, 8(6): 551-558. |
[7] | 刘芳, 闫慧敏, 顾峰雪, 牛忠恩, 黄玫. 退耕还林工程以来黄土高原植被NPP增长明显[J]. 资源与生态学报, 2017, 8(4): 413-421. |
[8] | 牛犇, 张宪洲, 何永涛, 石培礼, 付刚, 杜明远, 张扬建, 宗宁, 张晶, 武建双. 青藏高原高寒沼泽化草甸总初级生产力的遥感估算:多模型比较[J]. 资源与生态学报, 2017, 8(1): 57-66. |
[9] | 冯云飞, 张宪洲, 石培礼, 付刚, 张扬建, 赵广帅, 曾朝旭, 张晶. 藏北高寒高原载畜量对气候变化的响应:采食量和时滞效应[J]. 资源与生态学报, 2017, 8(1): 88-96. |
[10] | 王江伟, 付刚, 张光雨, 沈振西. 藏北高原高寒草甸生产力对不同幅度增温的响应[J]. 资源与生态学报, 2017, 8(1): 105-112. |
[11] | 刘芳, 张红旗, 许尔琪, 康蕾. 中国北方草地净初级生产力空间格局对环境因子的响应[J]. 资源与生态学报, 2016, 7(2): 92-100. |
[12] | 刘文超, 刘纪远, 颜长珍, 秦元伟, 闫慧敏. 基于遥感的中国陕北地区近20年耕地变化及其对农田生产力影响的定量评估[J]. 资源与生态学报, 2014, 5(3): 272-279. |
[13] | 王芳, 朱大奎. 基于全球变化视角的滨海旅游资源可持续发展对策研究[J]. 资源与生态学报, 2014, 5(1): 32-41. |
[14] | YU Guirui, LI Xuanran, WANG Qiufeng, LI Shenggong. 中国陆地生态系统的碳储量及其空间格局[J]. 资源与生态学报, 2010, 1(2): 97-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||