资源与生态学报 ›› 2021, Vol. 12 ›› Issue (6): 729-742.DOI: 10.5814/j.issn.1674-764x.2021.06.002
何豫川1(), 熊俊楠1, 阿布都马南·阿合买提哈力2,3,*(
), 程维明4,5,6,7, 叶冲冲1, 贺文1, 雍志玮1, 田洁1
收稿日期:
2021-04-01
接受日期:
2021-05-30
出版日期:
2021-11-30
发布日期:
2022-01-30
通讯作者:
阿布都马南·阿合买提哈力
HE Yuchuan1(), XIONG Junnan1, CHENG Weiming4,5,6,7, YE Chongchong1, HE Wen1, YONG Zhiwei1, TIAN Jie1
Received:
2021-04-01
Accepted:
2021-05-30
Online:
2021-11-30
Published:
2022-01-30
About author:
HE Yuchuan, E-mail: hyccyh897@163.com
Supported by:
摘要:
植被动态的定量评价和驱动机制分析对于促进区域可持续发展至关重要。近20年来,全球变暖导致阿勒泰地区的生态环境显著改变。同时,随着人类活动的增强,该地区的植被时空格局和驱动机制尚不明确,难以准确评估。因此,我们基于谷歌地球引擎(GEE)合成归一化植被指数(NDVI),对植被生长进行量化,在像素尺度上分析了植被的时空格局。最后基于NDVI与气象数据的相关性分析结果,利用显著性阈值分割方法,量化气候变化和人类活动对植被变化的贡献。结果表明:(1)阿勒泰地区植被覆盖主要集中在北部,2000-2019年植被显著恢复和显著退化的面积分别占阿勒泰地区的24.08%和1.24%;(2)阿尔泰地区NDVI与气温、降水和日照时数显著相关的区域分别占3.3%、6.9%和20.3%;(3)在植被显著恢复的区域,由多重因素控制主导的显著恢复占18.94%,由人类活动主导的恢复占3.4%,而由气候变化主导的显著恢复占1.74%,在植被显著退化区域,异常退化和气候变化主导的显著退化分别占1.07%和0.17%。本研究揭示了阿勒泰地区植被动态变化及其驱动机制,可为阿勒泰山水林田湖草生命共同体机制机理与关键修复技术研究提供科学依据。
何豫川, 熊俊楠, 阿布都马南·阿合买提哈力, 程维明, 叶冲冲, 贺文, 雍志玮, 田洁. 基于Google Earth Engine的阿勒泰地区植被时空格局及驱动力分析[J]. 资源与生态学报, 2021, 12(6): 729-742.
HE Yuchuan, XIONG Junnan, CHENG Weiming, YE Chongchong, HE Wen, YONG Zhiwei, TIAN Jie. Spatiotemporal Pattern and Driving Force Analysis of Vegetation Variation in Altay Prefecture based on Google Earth Engine[J]. Journal of Resources and Ecology, 2021, 12(6): 729-742.
Fig. 3 Spatial distribution of NDVI in Altay Prefecture Note:The bottom left in Fig. 3b is the F test result (P<0.05); The statistical graphs in the upper right corner of Fig. 3 are the percentage of each data level in the legend on the right in the entire area.
NDVI | Vegetation cover classification | Area (km2) | Proportion (%) |
---|---|---|---|
NDVI<0.2 | Low coverage | 64716 | 56.1 |
0.2≤NDVI<0.4 | Medium and low coverage | 14253 | 12.4 |
0.4≤NDVI<0.6 | Medium coverage | 8363 | 7.2 |
0.6≤NDVI<0.8 | Medium and high coverage | 7833 | 6.8 |
0.8≤NDVI | High coverage | 20146 | 17.5 |
Table 1 Vegetation cover classification of Altay Prefecture
NDVI | Vegetation cover classification | Area (km2) | Proportion (%) |
---|---|---|---|
NDVI<0.2 | Low coverage | 64716 | 56.1 |
0.2≤NDVI<0.4 | Medium and low coverage | 14253 | 12.4 |
0.4≤NDVI<0.6 | Medium coverage | 8363 | 7.2 |
0.6≤NDVI<0.8 | Medium and high coverage | 7833 | 6.8 |
0.8≤NDVI | High coverage | 20146 | 17.5 |
Slope | NDVI trend grading | Area (km2) | Proportion (%) |
---|---|---|---|
< -0.0100 | Serious degradation | 183 | 0.2 |
-0.0100 - -0.0050 | Moderate degradation | 451 | 0.4 |
-0.0050 - -0.0010 | Slight degradation | 5084 | 4.3 |
-0.0010 - 0.0010 | Essentially unchanged | 52531 | 44.8 |
0.0010 - 0.0050 | Slight restoration | 51090 | 43.6 |
0.0050 - 0.0100 | Moderate restoration | 4279 | 3.6 |
> 0.0100 | Obvious restoration | 3586 | 3.1 |
Table 2 NDVI trend grading table
Slope | NDVI trend grading | Area (km2) | Proportion (%) |
---|---|---|---|
< -0.0100 | Serious degradation | 183 | 0.2 |
-0.0100 - -0.0050 | Moderate degradation | 451 | 0.4 |
-0.0050 - -0.0010 | Slight degradation | 5084 | 4.3 |
-0.0010 - 0.0010 | Essentially unchanged | 52531 | 44.8 |
0.0010 - 0.0050 | Slight restoration | 51090 | 43.6 |
0.0050 - 0.0100 | Moderate restoration | 4279 | 3.6 |
> 0.0100 | Obvious restoration | 3586 | 3.1 |
Fig. 5 The variation trends of meteorological factors. A, B and C respectively represent air temperature, precipitation and sunshine hours; 1, 2, 3 and 4 respectively represent the multi-year mean, temporal trend, broken line chart of average trend and histogram at the pixel scale of the change rates.
Fig. 6 Spatial distribution diagrams of correlation coefficients between NDVI and meteorological factors of temperature (a), precipitation (b), and sunlight hours (c). Note: The inset maps in the bottom left corner of each show the t test results for each factor (P<0.05) and the statistical graphs in the upper right corner of Fig. 4 are the percentage of each data level in the legend on the right in the entire area.
Fig. 7 Spatial distribution diagrams of significantly correlated r values between NDVI and temperature (T, red), precipitation (P, green) and sunlight hours (S, blue).
Fig. 10 The evaluation chart of significant changes led by human factors. A and C indicate areas where cultivated land has increased, B indicates artificial reservoir areas, 1, 2 and 3 respectively represent NDVI distribution in 2000, NDVI distribution in 2019, and the numbers of pixels with different NDVI values.
[1] |
Bao G, Bao Y H, Sanjjava A, et al. 2015. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale. International Journal of Climatology, 35(14): 4293-4306.
DOI URL |
[2] |
Bao G, Qin Z H, Bao Y H, et al. 2014. NDVI-based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau. Remote Sensing, 6(9): 8337-8358.
DOI URL |
[3] |
Chen T, Bao A M, Jiapaer G, et al. 2019. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982-2015. Science of the Total Environment, 653: 1311-1325.
DOI |
[4] |
Davidson E A, Janssens I A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081): 165-173.
DOI URL |
[5] |
Deng C L, Zhang B Q, Cheng L Y, et al. 2019. Vegetation dynamics and their effects on surface water-energy balance over the Three-North Region of China. Agricultural and Forest Meteorology, 275: 79-90.
DOI URL |
[6] |
Du J Q, Shu J M, Yin J Q, et al. 2015. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. International Journal of Applied Earth Observation and Geoinformation, 38: 216-228.
DOI URL |
[7] |
Foley J A, Prentice I C, Ramankutty N, et al. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10(4): 603-628.
DOI URL |
[8] | Fu Q, Li B, Hou Y, et al. 2017. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Science of the Total Environment, 607-608: 633-646. |
[9] |
Gao J, Bian H Y. 2019. The impact of the Plains afforestation program and alternative land use scenarios on ecosystem services in an urbanizing watershed. Urban Forestry & Urban Greening, 43: 126373. DOI: 10.1016/j.ufug.2019.126373.
DOI |
[10] |
Hao L, Pan C, Fang D, et al. 2018. Quantifying the effects of overgrazing on mountainous watershed vegetation dynamics under a changing climate. Science of the Total Environment, 639: 1408-1420.
DOI URL |
[11] |
Hoffman M T, Cramer M D, Gillson L, et al. 2011. Pan evaporation and wind run decline in the Cape Floristic Region of South Africa (1974-2005): Implications for vegetation responses to climate change. Climatic Change, 109(3-4): 437-452.
DOI URL |
[12] |
Holben B N. 1986. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11): 1417-1434.
DOI URL |
[13] | IPCC. 2014a. Climate Change 2013: The physical science basis: Summary for policymakers. Geneva, Switzerland, IPCC. |
[14] | IPCC. 2014b. Climate change 2014:Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC. |
[15] |
Islam A R M T, Islam H T, Shahid S, et al. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change. Journal of Environmental Management, 289: 112505. DOI: 10.1016/j.jenvman.2021.112505.
DOI URL |
[16] |
Jiang H L, Xu X, Guan M X, et al. 2020. Determining the contributions of climate change and human activities to vegetation dynamics in ago-pastural transitional zone of northern China from 2000 to 2015. Science of the Total Environment, 718: 134871. DOI: 10.1016/j.scitote nv.2019.134871.
DOI URL |
[17] | Jiang L L, Guli J, Bao A M, et al. 2017. Vegetation dynamics and responses to climate change and human activities in Central Asia. Science of the Total Environment, 599-600: 967-980. |
[18] |
Jorda-Capdevila D, Gampe D, Huber García V, et al. 2019. Impact and mitigation of global change on freshwater-related ecosystem services in Southern Europe. Science of the Total Environment, 651: 895-908.
DOI |
[19] |
Kim D G, Vargas R, Bond-Lamberty B, et al. 2012. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences, 9(7): 2459-2483.
DOI URL |
[20] |
Li A, Wu J G, Huang J H. 2012. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in Inner Mongolia. Landscape Ecology, 27(7): 969-982.
DOI URL |
[21] |
Li K W, Tong Z J, Liu X P, et al. 2020a. Quantitative assessment and driving force analysis of vegetation drought risk to climate change: Methodology and application in Northeast China. Agricultural and Forest Meteorology, 282-283: 107865. DOI: 10.1016/j.agrformet.2019.107865.
DOI |
[22] |
Li W Q, Chen J H, Zhang Z M. 2020b. Forest quality-based assessment of the Returning Farmland to Forest Program at the community level in SW China. Forest Ecology and Management, 461: 117938. DOI: 10.1016/j.foreco.2020.117938.
DOI URL |
[23] |
Liu Y Y, Wang Q, Zhang Z Y, et al. 2019. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the Total Environment, 690: 27-39.
DOI URL |
[24] |
Lou J P, Xu G Y, Wang Z J, et al. 2021. Multi-year NDVI values as indicator of the relationship between spatiotemporal vegetation dynamics and environmental factors in the Qaidam basin, China. Remote Sensing, 13(7): 1240. DOI: 10.3390/rs13071240.
DOI URL |
[25] |
Ma M G, Veroustraete F. 2006. Interannual variability of vegetation cover in the Chinese Heihe River Basin and its relation to meterological parameters. International Journal of Remote Sensing, 27(22): 5127. DOI: 10.1080/01431160601103475.
DOI URL |
[26] |
Mahmoud S H, Gan T Y. 2018. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions. Science of the Total Environment, 633: 1329-1344.
DOI URL |
[27] |
Melillo J M, McGuire A D, Kicklighter D W, et al. 1993. Global climate change and terrestrial net primary production. Nature, 363(6426): 234-240.
DOI URL |
[28] |
Mueller T, Tucker C J, Dressler G, et al. 2014. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sensing, 6(6): 5717-5731.
DOI URL |
[29] | Oliva M, Pereira P, Antoniades D. 2018. The environmental consequences of permafrost degradation in a changing climate. Science of the Total Environment, 616: 435-437. |
[30] | Ozkaynak E. 2013. Effects of air temperature and hours of sunlight on the length of the vegetation period and the yield of some field crops. Ekoloji, 22(87): 58-63. |
[31] | Peng D D, Zhou T J. 2017. Why was the arid and semiarid northwest China getting wetter in the recent decades? Journal of Geophysical Research: Atmospheres, 122(17): 9060-9075. |
[32] |
Philippe A K R, Phoebe K, Ebun A, et al. 2019. Down scaling of climate change scenarii to river basin level: A transdisciplinary methodology applied to Evrotas River Basin, Greece. Science of the Total Environment, 660: 1623-1632.
DOI |
[33] | Piao S L, Fang J Y, Liu H Y, et al. 2005. NDVI—Indicated decline in desertification in China in the past two decades. Geophysical Research Letters, 32(6): 347-354. |
[34] |
Piao S L, Fang J Y, Zhou L M, et al. 2003. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research: Atmospheres, 108(D14): 4401. DOI: 10.1029/2002JD002848.
DOI URL |
[35] |
Piao S L, Pierre F, Ciais P, et al. 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles, 21(3): 3018. DOI: 10.1029/2006GB002888.
DOI |
[36] |
Potter C S, Davidson E A, Verchot L V. 1996. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere, 32(11): 2219-2246.
DOI URL |
[37] | Qin D H, Dong G G, Lu Q, et al. 2005. Assessment of climate and environment changes in China (I): Climate and environment changes in China and their projection. Climate Change Research, 1(2): 4-9. (in Chinese) |
[38] |
Shi P J, Sun S, Wang M, et al. 2014. Climate change regionalization in China(1961-2010). Science China Earth Sciences, 57(11): 2676-2689.
DOI URL |
[39] |
Herrmann S M, Anyamba A, Tucker C J. 2005. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Global Environmental Change, 15(4): 394-404.
DOI URL |
[40] |
Su Y Z, Zhao W Z, Su P X, et al. 2007. Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an arid region: A case study in Hexi Corridor, Northwest China. Ecological Engineering, 29(2): 117-124.
DOI URL |
[41] | Sun H Z, Wang J Y, Xiong J N, et al. 2021. Vegetation change and its response to climate change in Yunnan Province, China. Advances in Meteorology, 2021(12): 1-20. |
[42] |
Sun J, Zhou T C, Liu M, et al. 2020. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 29(1): 50-64.
DOI URL |
[43] |
Tian H J, Cao C X, Chen W, et al. 2015. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecological Engineering, 82(4): 276-289.
DOI URL |
[44] |
Turner M G, Carpenter S R. 2017. Ecosystem modeling for the 21st century. Ecosystems, 20(2): 211-214.
DOI URL |
[45] |
Wang F Y, Duan K Q, Fu S Y, et al. 2019. Partitioning climate and human contributions to changes in mean annual streamflow based on the Budyko complementary relationship in the Loess Plateau, China. Science of the Total Environment, 665: 579-590.
DOI URL |
[46] |
Wang Z J, Jiao J Y, Su Y, et al. 2014. The efficiency of large-scale afforestation with fish-scale pits for revegetation and soil erosion control in the steppe zone on the hill-gully Loess Plateau. Catena, 115: 159-167.
DOI URL |
[47] |
Yang P, Xia J, Zhang Y Y, et al. 2017. Temporal and spatial variations of precipitation in Northwest China during 1960-2013. Atmospheric Research, 183: 283-295.
DOI URL |
[48] |
Yao Y T, Wang X H, Li Y, et al. 2018. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 24(1): 184-196.
DOI URL |
[49] |
Ye C C, Sun J, Liu M, et al. 2020. Concurrent and lagged effects of extreme drought induce net reduction in vegetation carbon uptake on Tibetan Plateau. Remote Sensing, 12(15): 2347. DOI: 10.3390/rs12152347.
DOI URL |
[50] |
Ye X C, Zhang Q, Liu J, et al. 2013. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake Catchment, China. Journal of Hydrology, 494: 83-95.
DOI URL |
[51] |
Zhang G P, Yan J J, Zhu X T, et al. 2019. Spatio-temporal variation in grassland degradation and its main drivers, based on biomass: Case study in the Altay Prefecture, China. Global Ecology and Conservation, 20: e00723. DOI: 10.1016/j.gecco.2019.e00723.
DOI URL |
[52] |
Zhang M Y, O’Connor P J, Zhang J Y, et al. 2021. Linking soil nutrient cycling and microbial community with vegetation cover in riparian zone. Geoderma, 384: 114801. DOI: 10.1016/j.geoderma.2020.114801.
DOI URL |
[53] |
Zhao X, Tan K, Zhao S, et al. 2011. Changing climate affects vegetation growth in the arid region of the northwestern China. Journal of Arid Environments, 75(10): 946-952.
DOI URL |
[1] | 王白雪, 程维明, 蓝盛新. 阿勒泰地区土地利用变化对生境的影响[J]. 资源与生态学报, 2021, 12(6): 715-728. |
[2] | 田洁, 熊俊楠, 张一驰, 程维明, 何豫川, 叶冲冲, 贺文. 定量评估气候变化和人类活动对阿勒泰地区草地净初级生产力的影响[J]. 资源与生态学报, 2021, 12(6): 743-756. |
[3] | 叶辉, 白蝶, 谈树成, 邵大江, 王金亮. 基于多源数据的阿勒泰地区土地生态安全评价研究[J]. 资源与生态学报, 2021, 12(6): 757-765. |
[4] | 刘浩, 舒昶, 周婷婷, 刘鹏. 阿勒泰地区基于土地覆被变化的生态系统服务协同与权衡关系及驱动力分析[J]. 资源与生态学报, 2021, 12(6): 777-790. |
[5] | 李依, 刘煜杰, 张强, 朱粟锋, 刘浩, 刘淑芳. 基于山水林田湖草耦合视角的阿勒泰地区生态保护修复对策研究[J]. 资源与生态学报, 2021, 12(6): 791-800. |
[6] | 石培礼, 吴宁, GopalS.RAWAT. 喜马拉雅地区林线格局及其对气候变化的响应[J]. 资源与生态学报, 2020, 11(4): 342-348. |
[7] | 王向涛, 张宪洲, 王俊皓, 牛犇. 青藏高原干旱度指数对气候因子变化的响应[J]. 资源与生态学报, 2020, 11(3): 304-314. |
[8] | 向伶, 高翔, 彭玉辉, 梁婕. 气候变化下基于物种与植物耦联机制的小白额雁(Anser erythropus)潜在生境及适宜性研究——以长江流域中下游为例[J]. 资源与生态学报, 2020, 11(2): 140-149. |
[9] | Raju RAI, Basanta PAUDEL, 谷昌军, Narendra Raj KHANAL. 喜马拉雅中部甘达基河流域尼泊尔国鸟(棕尾虹雉)生境分布变化[J]. 资源与生态学报, 2020, 11(2): 223-231. |
[10] | 刘远哲,宋伟,赵东升,高江波. 气候变化对工业经济系统的影响研究进展[J]. 资源与生态学报, 2020, 11(1): 1-12. |
[11] | Eric Ariel L. SALAS, Raul VALDEZ, Stefan MICHEL, Kenneth G. BOYKIN. 不同气候变化情景下亚洲北山羊(Capra sibirica)的响应[J]. 资源与生态学报, 2020, 11(1): 27-37. |
[12] | 王钊, 王军邦. 三江源地区2000-2015年土壤侵蚀变化及生态恢复潜在影响研究[J]. 资源与生态学报, 2019, 10(5): 461-471. |
[13] | 谭景方, 万基中, 罗芳丽, 于飞海. 维管植物遗传多样性与气候因子的关系[J]. 资源与生态学报, 2018, 9(6): 663-672. |
[14] | SalifDiop, AliouGuisse, ClaudeSene, BiraneCisse, NdeyeRokhayaDiop, SokhnaDiéKa, AmadyGnagnaCisse, SalySambou, OusmaneNdiaye, AdandéBelarmainFandohan, 付超, 王国勤, 王永东. 通过绿色长城倡议在萨赫勒地区防治荒漠化并改善当地生计:以塞内加尔为例[J]. 资源与生态学报, 2018, 9(3): 257-265. |
[15] | 王卷乐. 全球气候变暖背景下的土地干旱化现象研究—以贝加尔地区为例[J]. 资源与生态学报, 2017, 8(2): 141-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||