资源与生态学报 ›› 2020, Vol. 11 ›› Issue (3): 253-262.DOI: 10.5814/j.issn.1674-764X.2020.03.002
牛犇1, 何永涛1,2, 张宪洲1,2,*(), 石培礼1,2, 杜明远3
收稿日期:
2020-03-02
接受日期:
2020-04-11
出版日期:
2020-05-30
发布日期:
2020-06-16
通讯作者:
张宪洲
NIU Ben1, HE Yongtao1,2, ZHANG Xianzhou1,2,*(), SHI Peili1,2, DU Mingyuan3
Received:
2020-03-02
Accepted:
2020-04-11
Online:
2020-05-30
Published:
2020-06-16
Contact:
ZHANG Xianzhou
About author:
NIU Ben, E-mail: niub@igsnrr.ac.cn
Supported by:
摘要:
太阳辐射驱动的植物光合作用是所有生物圈功能的基础。高寒草甸生态系统范围广,土壤碳密度高,气候变化剧烈,因此是高寒生态系统关键过程响应气候变化的指示器。然而,对高寒草甸生态系统光合作用的主要参数,包括被冠层吸收的光合有效辐射占比(FPAR)、冠层消光系数(k)和冠层叶面积指数(LAI)季节动态的研究较为缺乏。利用2009-2011年太阳辐射各组分和植被叶面积指数观测,分别估算了位于西藏自治区当雄县一个典型的高寒草地生态系统的这三个光合参数,并与最新MODIS(collection 6)遥感FPAR(FPAR_MOD)和LAI产品(LAI_MOD)进行了对比。此外,基于比尔-朗伯吸收定律和MODIS植被指数产品(归一化植被指数NDVI和增强型植被指数EVI),本研究介绍了一个纯遥感手段估算高寒草甸生态系统植被冠层光合参数季节动态的方法。结果表明:2009-2011年该研究区高寒草甸日均FPAR分别是0.33、0.37和0.35,所有4个基于遥感的FPAR产品,包括FPAR_MOD、基于比尔-朗伯吸收定律(常数化消光系数为0.5)估算的FPAR_LAI,以及2个利用MODIS植被指数产品与FPAR地面观测(FAPRg)建立非线性统计模型估算的FPAR(FPAR_NDVI和FPAR_EVI)均对FPARg的年内季节变异做出了很好的解释。相比而言,FPAR_MOD严重低估了FPARg,低估量超过了FPARg本身的40%;FPAR_LAI也明显低估了FPARg,低估量将近 20%,这主要是由于比尔-朗伯吸收定律中k值在整个生长季都被设置为常数0.5,因此用FPAR_LAI去校准FPAR_MOD在该高寒草甸不是一个科学合理的方法。通过遥感估算,该高寒草甸的k值存在明显的季节变异,变异范围是0.19-2.95。考虑k值的季节变化后,FPAR_NDVI和FPAR_EVI明显地提高了对FPARg的估算精度,二者对FPARg虽然有轻微的高估,但高估量均不到5%(RMSE=0.05)。基于植被指数(NDVI和EVI)模拟的FPAR和k的季节动态,利用比尔-朗伯吸收定律估算的植被叶面积指数(LAI_NDVI和LAI_EVI)明显提高了遥感LAI_MOD产品的准确度。本研究揭示了基于比尔-朗伯吸收定律,植被指数构建的遥感模型可以提供该高寒草甸FPAR、k和LAI季节动态简单而有效的估算方法。
牛犇, 何永涛, 张宪洲, 石培礼, 杜明远. Tibet西藏高寒草甸冠层光合参数的遥感估算:站点研究[J]. 资源与生态学报, 2020, 11(3): 253-262.
NIU Ben, HE Yongtao, ZHANG Xianzhou, SHI Peili, DU Mingyuan. Satellite-based Estimates of Canopy Photosynthetic Parameters for an Alpine Meadow in Northern[J]. Journal of Resources and Ecology, 2020, 11(3): 253-262.
Fig. 1 The 8-day step radiation observations during the years 2009 to 2011. (a) Total radiation and net radiation. (b) Photosynthetically active radiation (PAR) and the absorbed PAR by canopy (APAR).
Fig. 2 Seasonal patterns of FPAR observations (FPARg) and satellite-based FPAR estimations from 2009 to 2011 (a); and comparison with the FPARg from: 2009 (b); 2010 (c); and 2011 (d). Slope values (Slope) in (b-d) are the linear relationships between FAPRg and satellite-based FPAR estimations, and the dashed lines are the reference lines of 1:1. All linear
Method | Daily average FPAR estimations (n=21) | Mean FPAR (n=63) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean of SD | RMSE | RPE (%) | ||||||||||
2009 | 2010 | 2011 | 2009 | 2010 | 2011 | Mean | 2009 | 2010 | 2011 | Mean | Mean (SD) | |
FPAR_MOD | 0.19 (0.08) | 0.21 (0.11) | 0.20 (0.09) | 0.16 | 0.19 | 0.16 | 0.17 | 43.1 | 43.0 | 41.9 | 42.7 | 0.20 (0.09) a |
FPAR_LAI | 0.26 (0.16) | 0.30 (0.21) | 0.30 (0.20) | 0.13 | 0.20 | 0.16 | 0.17 | 23.4 | 19.1 | 15.1 | 19.2 | 0.29 (0.19) b |
FPAR_NDVI | 0.34 (0.05) | 0.36 (0.05) | 0.36 (0.06) | 0.07 | 0.06 | 0.03 | 0.05 | -4.2 | 3.8 | -1.3 | -0.5 | 0.36 (0.05) c |
FPAR_EVI | 0.35 (0.05) | 0.36 (0.06) | 0.36 (0.05) | 0.07 | 0.06 | 0.03 | 0.05 | -4.1 | 4.5 | 1.2 | -0.3 | 0.35 (0.05) c |
FPARg | 0.33 (0.08) | 0.37 (0.10) | 0.35 (0.09) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.35 (0.08) c |
Table 1 Satellite-based FPAR estimations and comparisons with tower-based FPAR observations during the growing seasons from 2009 to 2011.
Method | Daily average FPAR estimations (n=21) | Mean FPAR (n=63) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean of SD | RMSE | RPE (%) | ||||||||||
2009 | 2010 | 2011 | 2009 | 2010 | 2011 | Mean | 2009 | 2010 | 2011 | Mean | Mean (SD) | |
FPAR_MOD | 0.19 (0.08) | 0.21 (0.11) | 0.20 (0.09) | 0.16 | 0.19 | 0.16 | 0.17 | 43.1 | 43.0 | 41.9 | 42.7 | 0.20 (0.09) a |
FPAR_LAI | 0.26 (0.16) | 0.30 (0.21) | 0.30 (0.20) | 0.13 | 0.20 | 0.16 | 0.17 | 23.4 | 19.1 | 15.1 | 19.2 | 0.29 (0.19) b |
FPAR_NDVI | 0.34 (0.05) | 0.36 (0.05) | 0.36 (0.06) | 0.07 | 0.06 | 0.03 | 0.05 | -4.2 | 3.8 | -1.3 | -0.5 | 0.36 (0.05) c |
FPAR_EVI | 0.35 (0.05) | 0.36 (0.06) | 0.36 (0.05) | 0.07 | 0.06 | 0.03 | 0.05 | -4.1 | 4.5 | 1.2 | -0.3 | 0.35 (0.05) c |
FPARg | 0.33 (0.08) | 0.37 (0.10) | 0.35 (0.09) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.35 (0.08) c |
Fig. 3 Satellite-based estimations of the fractions of absorbed PAR by vegetation canopy (FPAR) and the extinction coefficient (kt) in the alpine meadow study area (n = 63)
Fig. 4 Seasonal patterns of LAI observation (LAIg) and satellite-based LAI estimations derived from satellite-based PFAR and kt estimations (a); and comparison with the LAIg from 2009 to 2011 (b). Slope values and dashed lines in (b) are the linear slope between LAIg and satellite-based LAI estimations, and the reference lines of 1:1, respectively. All linear regressions are extremely significant (P < 0.0001).
1 | Baldocchi D D, Matt D R, Hutchison B A , et al. 1984. Solar radiation within an oak—hickory forest: An evaluation of the extinction coefficients for several radiation components during fully-leafed and leafless periods. Agricultural and Forest Meteorology, 32(3):307-322. |
2 | Behera S K, Srivastava P, Pathre U V , et al. 2010. An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 Plant Canopy Analyzer. Agricultural and Forest Meteorology, 150(2):307-311. |
3 | Cao X, Zhou Z, Chen X , et al. 2015. Improving leaf area index simulation of IBIS model and its effect on water carbon and energy—A case study in Changbai Mountain broadleaved forest of China. Ecological Modelling, 303:97-104. |
4 | Chen B X, Zhang X Z, Tao J , et al. 2014. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 189-190:11-18. |
5 |
Chen H, Zhu Q, Peng C , et al. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19(10):2940-2955.
DOI URL |
6 |
Chen J, Shen M, Kato T . 2009. Diurnal and seasonal variations in light-use efficiency in an alpine meadow ecosystem: Causes and implications for remote sensing. Journal of Plant Ecology, 2(4):173-185.
DOI URL |
7 | Chen J M, Blanken P D, Black T A , et al. 1997. Radiation regime and canopy architecture in a boreal aspen forest. Agricultural and Forest Meteorology, 86(1):107-125. |
8 | de Almeida C T, Delgado R C, Galvão L S , et al. 2018. Improvements of the MODIS Gross Primary Productivity model based on a comprehensive uncertainty assessment over the Brazilian Amazonia. ISPRS Journal of Photogrammetry and Remote Sensing, 145:268-283. |
9 | Dong J, Xiao X, Wagle P , et al. 2015. Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sensing of Environment, 162:154-168. |
10 | Du M, Li Y, Zhang F , et al. 2018. Recent changes of climate and livestock productions on the Tibetan Plateau and in situ observations of NEE. Journal of Arid Land Studies, 28(S):139-142. |
11 | Fensholt R, Sandholt I, Rasmussen M S. 2004. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment, 91(3-4):490-507. |
12 | Fu G, Shen Z X, Zhang X Z , et al. 2012. Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau. Canadian Journal of Remote Sensing, 38(2):157-168. |
13 | Fu G, Wu J S. 2017. Validation of MODIS collection 6 FPAR/LAI in the alpine grassland of the Northern Tibetan Plateau. Remote Sensing Letters, 8(9):831-838. |
14 |
Gao Y, Yu G, Li S , et al. 2015. A remote sensing model to estimate ecosystem respiration in Northern China and the Tibetan Plateau. Ecological Modelling, 304:34-43.
DOI URL |
15 |
Gao Y, Yu G, Yan H , et al. 2014. A MODIS-based Photosynthetic Capacity Model to estimate gross primary production in Northern China and the Tibetan Plateau. Remote Sensing of Environment, 148:108-118.
DOI URL |
16 | Gitelson A A, Viña A, Verma S B , et al. 2006. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres, 111(D8):1-13. |
17 | Hanan N P, Burba G, Verma S B , et al. 2002. Inversion of net ecosystem CO2 flux measurements for estimation of canopy PAR absorption. Global Change Biology, 8(6):563-574. |
18 | Heinsch F A, Reeves M, Votava P , et al. 2003. GPP and NPP (MOD17A2/ A3) Products NASA MODIS Land Algorithm. MOD17 User's Guide: 1-57. |
19 | Kang Y, Özdoğan M, Zipper S , et al. 2016. How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment. Remote Sensing, 8(7):597. DOI: 10.3390/ rs8070597. |
20 |
Li J, Fang X . 1999. Uplift of the Tibetan Plateau and environmental changes. Chinese Science Bulletin, 44(23):2117-2124.
DOI URL |
21 | Liang T, Yang S, Feng Q , et al. 2016. Multi-factor modeling of above- ground biomass in alpine grassland: A case study in the Three-River Headwaters Region, China. Remote Sensing of Environment, 186:164-172. |
22 | Liu S, Cheng F, Dong S , et al. 2017. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI. Scientific Reports, 7(1):4182. DOI: 10.1038/s41598- 017-04038-4. |
23 | Ni J . 2002. Carbon storage in grasslands of China. Journal of Arid Environments, 50(2):205-218. |
24 | Niu B, He Y, Zhang X , et al. 2016. Tower-based validation and improvement of MODIS gross primary production in an alpine swamp meadow on the Tibetan Plateau. Remote Sensing, 8(7):592. DOI: 10.3390/rs8070592. |
25 |
Niu B, He Y, Zhang X , et al. 2017a. CO2 exchange in an alpine swamp meadow on the Central Tibetan Plateau. Wetlands, 37:1-19.
DOI URL |
26 | Niu B, He Y, Zhang X , et al. 2017b. Satellite-based inversion and field validation of autotrophic and heterotrophic respiration in an alpine meadow on the Tibetan Plateau. Remote Sensing, 9(6):615. DOI: 10.3390/rs9060615. |
27 | Niu B, Zhang X, He Y , et al. 2017c. Satellite-based estimation of gross primary production in an alpine swamp meadow on the Tibetan Plateau: A multi-model comparison. Journal of Resources and Ecology, 8(1):57-66. |
28 | Olofsson P, Eklundh L . 2007. Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: Modeling and evaluating the fractional absorption. Remote Sensing of Environment, 110(2):240-251. |
29 | Piao S, Zhang X, Wang T , et al. 2019. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chinese Science Bulletin, 64(27):2842-2855. |
30 |
Rossini M, Cogliati S, Meroni M , et al. 2012. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences, 9(7):2565-2584.
DOI URL |
31 | Ruimy A, Kergoat L, Bondeau A , et al. 1999. Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency. Global Change Biology, 5(S1):56-64. |
32 | Running S W, Thornton P E, Nemani R , et al. 2000. Global terrestrial gross and net primary productivity from the earth observing system, In: Sala O E, Jackson R B, Mooney H A, et al. (ed.).Methods in ecosystem science. New York, USA: Springer, 44-57. |
33 | Saito M, Kato T, Tang Y. 2009. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology, 15(1):221-228. |
34 | Saitoh T M, Nagai S, Noda H M , et al. 2012. Examination of the extinction coefficient in the Beer-Lambert law for an accurate estimation of the forest canopy leaf area index. Forest Science and Technology, 8(2):67-76. |
35 | Shi P L, Sun X M, Xu L L , et al. 2006. Net ecosystem CO2 exchange and controlling factors in a steppe - Kobresia meadow on the Tibetan Plateau. Science in China Series D-Earth Sciences, 49(S2):207-218. |
36 | Tang X, Li H, Huang N , et al. 2015. A comprehensive assessment of MODIS-derived GPP for forest ecosystems using the site-level FLUXNET database. Environmental Earth Sciences, 74(7):5907-5918. |
37 | Turner D P, Ritts W D, Cohen W B , et al. 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biology, 11(4):666-684. |
38 |
Turner D P, Ritts W D, Cohen W B , et al. 2006. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sensing of Environment, 102(3-4):282-292.
DOI URL |
39 | Varlet-Grancher C, Bonhomme R, Jacob C , et al. 1980. Caracterisation et evolution de la structure d'un couvert vegetal de canne a sucre, Annales agronomiques. |
40 | Verma M, Friedl M A, Law B E , et al. 2015. Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agricultural and Forest Meteorology, 214- 215:416-429. |
41 |
Wagle P, Gowda P H, Xiao X , et al. 2016. Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI. Agricultural and Forest Meteorology, 222:87-97.
DOI URL |
42 |
Wang Q, Tenhunen J, Granier A , et al. 2004. Long-term variations in leaf area index and light extinction in a Fagus sylvatica stand as estimated from global radiation profiles. Theoretical and Applied Climatology, 79(3):225-238.
DOI URL |
43 |
Weiss M, Baret F, Smith G J , et al. 2004. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1-2):37-53.
DOI URL |
44 |
Wohlfahrt G, Anderson-Dunn M, Bahn M , et al. 2008. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems, 11(8):1338-1351.
DOI URL |
45 |
Xiao J, Chevallier F, Gomez C , et al. 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233:111383. DOI: 10.1016/j.rse.2019.111383.
DOI URL |
46 |
Xiao X, Hollinger D, Aber J , et al. 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89(4):519-534.
DOI URL |
47 |
Xiao X, Zhang Q, Saleska S , et al. 2005. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 94(1):105-122.
DOI URL |
48 |
Xu L L, Zhang X Z, Shi P L , et al. 2007. Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. Ecological Modelling, 208(2-4):129-134.
DOI URL |
49 | Yan H, Fu Y, Xiao X , et al. 2009. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture, Ecosystems & Environment, 129(4):391-400. |
50 | Yang X, Tang J, Mustard J F , et al. 2015. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters, 42(8):2977-2987. |
51 | Yin G, Li A, Jin H , et al. 2017. Derivation of temporally continuous LAI reference maps through combining the LAINet observation system with CACAO. Agricultural and Forest Meteorology, 233:209-221. |
52 | Zhang B, Shi P, He Y , et al. 2009. The climate feature of Damxung alpine meadow carbon flux research station on the Tibetan Plateau. Journal of Mountain Science, 27(1):88-95. |
53 | Zhang L, Zhou D, Fan J , et al. 2019. Contrasting the performance of eight satellite-based GPP models in water-limited and temperature-limited grassland ecosystems. Remote Sensing, 11(11):1333. DOI: 10.3390/rs11111333. |
54 | Zhang X, Yang Y, Piao S , et al. 2015. Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 60(32):3048-3056. |
55 | Zhang Y, Yu Q, Jiang J I E , et al. 2008. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Global Change Biology, 14(4):757-767. |
56 | Zhao L, Li Y, Xu S , et al. 2006. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan Plateau. Global Change Biology, 12(10):1940-1953. |
57 | Zheng D, Zhang Q, Wu S . 2000. Mountain geoecology and sustainable development of the Tibetan Plateau. Dordrecht: Springer. |
58 | Zheng Y, Zhang L, Xiao J , et al. 2018. Sources of uncertainty in gross primary productivity simulated by light use efficiency models: Model structure, parameters, input data, and spatial resolution. Agricultural and Forest Meteorology, 263:242-257. |
59 |
Zhou X, Xin Q. 2019. Improving satellite-based modelling of gross primary production in deciduous broadleaf forests by accounting for seasonality in light use efficiency. International Journal of Remote Sensing, 40(3):931-955.
DOI URL |
60 |
Zhou Y, Fu G, Shen Z , et al. 2013. Estimation model of aboveground biomass in the Northern Tibet Plateau based on remote sensing date. Acta Prataculturae Sinica, 22(1):120-129. (in Chinese)
DOI URL |
61 | Zhu Z, Piao S, Lian X , et al. 2017. Attribution of seasonal leaf area index trends in the northern latitudes with “optimally” integrated ecosystem models. Global Change Biology, 23(11):4798-4813. |
[1] | 石培礼, 张宪洲. 走向区域协同:协调草地生态功能与牧草生产服务[J]. 资源与生态学报, 2020, 11(3): 247-252. |
[2] | 王芳, 何永涛, 付刚, 牛犇, 张豪睿, 李猛, 王志鹏, 王向涛, 张宪洲. 围栏封育对不同类型高寒草地植物及土壤养分的影响[J]. 资源与生态学报, 2020, 11(3): 290-297. |
[3] | 柴曦, 石培礼, 宗宁, 牛犇, 何永涛, 张宪洲. 西藏高原高寒嵩草草甸在不同降雨条件下CO2通量的生物物理调节机制[J]. 资源与生态学报, 2017, 8(1): 30-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||